| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt11.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt11.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt11.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt11.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt11.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 |  | metakunt11.6 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 7 | 4 | a1i |  |-  ( ( ph /\ X < I ) -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) | 
						
							| 8 |  | eqeq1 |  |-  ( x = ( C ` X ) -> ( x = I <-> ( C ` X ) = I ) ) | 
						
							| 9 |  | breq1 |  |-  ( x = ( C ` X ) -> ( x < I <-> ( C ` X ) < I ) ) | 
						
							| 10 |  | id |  |-  ( x = ( C ` X ) -> x = ( C ` X ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = ( C ` X ) -> ( x - 1 ) = ( ( C ` X ) - 1 ) ) | 
						
							| 12 | 9 10 11 | ifbieq12d |  |-  ( x = ( C ` X ) -> if ( x < I , x , ( x - 1 ) ) = if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) | 
						
							| 13 | 8 12 | ifbieq2d |  |-  ( x = ( C ` X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ph /\ X < I ) /\ x = ( C ` X ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) | 
						
							| 15 | 5 | a1i |  |-  ( ( ph /\ X < I ) -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) | 
						
							| 16 |  | eqeq1 |  |-  ( y = X -> ( y = M <-> X = M ) ) | 
						
							| 17 |  | breq1 |  |-  ( y = X -> ( y < I <-> X < I ) ) | 
						
							| 18 |  | id |  |-  ( y = X -> y = X ) | 
						
							| 19 |  | oveq1 |  |-  ( y = X -> ( y + 1 ) = ( X + 1 ) ) | 
						
							| 20 | 17 18 19 | ifbieq12d |  |-  ( y = X -> if ( y < I , y , ( y + 1 ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 21 | 16 20 | ifbieq2d |  |-  ( y = X -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( ph /\ X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) | 
						
							| 23 |  | elfznn |  |-  ( X e. ( 1 ... M ) -> X e. NN ) | 
						
							| 24 | 6 23 | syl |  |-  ( ph -> X e. NN ) | 
						
							| 25 | 24 | nnred |  |-  ( ph -> X e. RR ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ X < I ) -> X e. RR ) | 
						
							| 27 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ X < I ) -> I e. RR ) | 
						
							| 29 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ X < I ) -> M e. RR ) | 
						
							| 31 |  | simpr |  |-  ( ( ph /\ X < I ) -> X < I ) | 
						
							| 32 | 3 | adantr |  |-  ( ( ph /\ X < I ) -> I <_ M ) | 
						
							| 33 | 26 28 30 31 32 | ltletrd |  |-  ( ( ph /\ X < I ) -> X < M ) | 
						
							| 34 | 26 33 | ltned |  |-  ( ( ph /\ X < I ) -> X =/= M ) | 
						
							| 35 |  | df-ne |  |-  ( X =/= M <-> -. X = M ) | 
						
							| 36 | 34 35 | sylib |  |-  ( ( ph /\ X < I ) -> -. X = M ) | 
						
							| 37 |  | iffalse |  |-  ( -. X = M -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ph /\ X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 39 |  | iftrue |  |-  ( X < I -> if ( X < I , X , ( X + 1 ) ) = X ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ph /\ X < I ) -> if ( X < I , X , ( X + 1 ) ) = X ) | 
						
							| 41 | 38 40 | eqtrd |  |-  ( ( ph /\ X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = X ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ph /\ X < I ) /\ y = X ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = X ) | 
						
							| 43 | 22 42 | eqtrd |  |-  ( ( ( ph /\ X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) | 
						
							| 44 | 6 | adantr |  |-  ( ( ph /\ X < I ) -> X e. ( 1 ... M ) ) | 
						
							| 45 | 15 43 44 44 | fvmptd |  |-  ( ( ph /\ X < I ) -> ( C ` X ) = X ) | 
						
							| 46 |  | eqeq1 |  |-  ( ( C ` X ) = X -> ( ( C ` X ) = I <-> X = I ) ) | 
						
							| 47 | 46 | ifbid |  |-  ( ( C ` X ) = X -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = if ( X = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) | 
						
							| 48 | 45 47 | syl |  |-  ( ( ph /\ X < I ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = if ( X = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) | 
						
							| 49 | 26 31 | ltned |  |-  ( ( ph /\ X < I ) -> X =/= I ) | 
						
							| 50 | 49 | neneqd |  |-  ( ( ph /\ X < I ) -> -. X = I ) | 
						
							| 51 |  | iffalse |  |-  ( -. X = I -> if ( X = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ph /\ X < I ) -> if ( X = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) | 
						
							| 53 | 45 | eqcomd |  |-  ( ( ph /\ X < I ) -> X = ( C ` X ) ) | 
						
							| 54 |  | breq1 |  |-  ( X = ( C ` X ) -> ( X < I <-> ( C ` X ) < I ) ) | 
						
							| 55 |  | id |  |-  ( X = ( C ` X ) -> X = ( C ` X ) ) | 
						
							| 56 |  | oveq1 |  |-  ( X = ( C ` X ) -> ( X - 1 ) = ( ( C ` X ) - 1 ) ) | 
						
							| 57 | 54 55 56 | ifbieq12d |  |-  ( X = ( C ` X ) -> if ( X < I , X , ( X - 1 ) ) = if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) | 
						
							| 58 | 53 57 | syl |  |-  ( ( ph /\ X < I ) -> if ( X < I , X , ( X - 1 ) ) = if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) | 
						
							| 59 | 58 | eqcomd |  |-  ( ( ph /\ X < I ) -> if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) = if ( X < I , X , ( X - 1 ) ) ) | 
						
							| 60 | 31 | iftrued |  |-  ( ( ph /\ X < I ) -> if ( X < I , X , ( X - 1 ) ) = X ) | 
						
							| 61 | 59 60 | eqtrd |  |-  ( ( ph /\ X < I ) -> if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) = X ) | 
						
							| 62 | 52 61 | eqtrd |  |-  ( ( ph /\ X < I ) -> if ( X = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) | 
						
							| 63 | 48 62 | eqtrd |  |-  ( ( ph /\ X < I ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( ph /\ X < I ) /\ x = ( C ` X ) ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) | 
						
							| 65 | 14 64 | eqtrd |  |-  ( ( ( ph /\ X < I ) /\ x = ( C ` X ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = X ) | 
						
							| 66 | 1 2 3 5 | metakunt2 |  |-  ( ph -> C : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ph /\ X < I ) -> C : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 68 | 67 44 | ffvelcdmd |  |-  ( ( ph /\ X < I ) -> ( C ` X ) e. ( 1 ... M ) ) | 
						
							| 69 | 7 65 68 44 | fvmptd |  |-  ( ( ph /\ X < I ) -> ( A ` ( C ` X ) ) = X ) |