Metamath Proof Explorer


Theorem metakunt11

Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt11.1 φ M
metakunt11.2 φ I
metakunt11.3 φ I M
metakunt11.4 A = x 1 M if x = I M if x < I x x 1
metakunt11.5 C = y 1 M if y = M I if y < I y y + 1
metakunt11.6 φ X 1 M
Assertion metakunt11 φ X < I A C X = X

Proof

Step Hyp Ref Expression
1 metakunt11.1 φ M
2 metakunt11.2 φ I
3 metakunt11.3 φ I M
4 metakunt11.4 A = x 1 M if x = I M if x < I x x 1
5 metakunt11.5 C = y 1 M if y = M I if y < I y y + 1
6 metakunt11.6 φ X 1 M
7 4 a1i φ X < I A = x 1 M if x = I M if x < I x x 1
8 eqeq1 x = C X x = I C X = I
9 breq1 x = C X x < I C X < I
10 id x = C X x = C X
11 oveq1 x = C X x 1 = C X 1
12 9 10 11 ifbieq12d x = C X if x < I x x 1 = if C X < I C X C X 1
13 8 12 ifbieq2d x = C X if x = I M if x < I x x 1 = if C X = I M if C X < I C X C X 1
14 13 adantl φ X < I x = C X if x = I M if x < I x x 1 = if C X = I M if C X < I C X C X 1
15 5 a1i φ X < I C = y 1 M if y = M I if y < I y y + 1
16 eqeq1 y = X y = M X = M
17 breq1 y = X y < I X < I
18 id y = X y = X
19 oveq1 y = X y + 1 = X + 1
20 17 18 19 ifbieq12d y = X if y < I y y + 1 = if X < I X X + 1
21 16 20 ifbieq2d y = X if y = M I if y < I y y + 1 = if X = M I if X < I X X + 1
22 21 adantl φ X < I y = X if y = M I if y < I y y + 1 = if X = M I if X < I X X + 1
23 elfznn X 1 M X
24 6 23 syl φ X
25 24 nnred φ X
26 25 adantr φ X < I X
27 2 nnred φ I
28 27 adantr φ X < I I
29 1 nnred φ M
30 29 adantr φ X < I M
31 simpr φ X < I X < I
32 3 adantr φ X < I I M
33 26 28 30 31 32 ltletrd φ X < I X < M
34 26 33 ltned φ X < I X M
35 df-ne X M ¬ X = M
36 34 35 sylib φ X < I ¬ X = M
37 iffalse ¬ X = M if X = M I if X < I X X + 1 = if X < I X X + 1
38 36 37 syl φ X < I if X = M I if X < I X X + 1 = if X < I X X + 1
39 iftrue X < I if X < I X X + 1 = X
40 39 adantl φ X < I if X < I X X + 1 = X
41 38 40 eqtrd φ X < I if X = M I if X < I X X + 1 = X
42 41 adantr φ X < I y = X if X = M I if X < I X X + 1 = X
43 22 42 eqtrd φ X < I y = X if y = M I if y < I y y + 1 = X
44 6 adantr φ X < I X 1 M
45 15 43 44 44 fvmptd φ X < I C X = X
46 eqeq1 C X = X C X = I X = I
47 46 ifbid C X = X if C X = I M if C X < I C X C X 1 = if X = I M if C X < I C X C X 1
48 45 47 syl φ X < I if C X = I M if C X < I C X C X 1 = if X = I M if C X < I C X C X 1
49 26 31 ltned φ X < I X I
50 49 neneqd φ X < I ¬ X = I
51 iffalse ¬ X = I if X = I M if C X < I C X C X 1 = if C X < I C X C X 1
52 50 51 syl φ X < I if X = I M if C X < I C X C X 1 = if C X < I C X C X 1
53 45 eqcomd φ X < I X = C X
54 breq1 X = C X X < I C X < I
55 id X = C X X = C X
56 oveq1 X = C X X 1 = C X 1
57 54 55 56 ifbieq12d X = C X if X < I X X 1 = if C X < I C X C X 1
58 53 57 syl φ X < I if X < I X X 1 = if C X < I C X C X 1
59 58 eqcomd φ X < I if C X < I C X C X 1 = if X < I X X 1
60 31 iftrued φ X < I if X < I X X 1 = X
61 59 60 eqtrd φ X < I if C X < I C X C X 1 = X
62 52 61 eqtrd φ X < I if X = I M if C X < I C X C X 1 = X
63 48 62 eqtrd φ X < I if C X = I M if C X < I C X C X 1 = X
64 63 adantr φ X < I x = C X if C X = I M if C X < I C X C X 1 = X
65 14 64 eqtrd φ X < I x = C X if x = I M if x < I x x 1 = X
66 1 2 3 5 metakunt2 φ C : 1 M 1 M
67 66 adantr φ X < I C : 1 M 1 M
68 67 44 ffvelrnd φ X < I C X 1 M
69 7 65 68 44 fvmptd φ X < I A C X = X