Description: A is an endomapping. (Contributed by metakunt, 23-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt2.1 | |
|
metakunt2.2 | |
||
metakunt2.3 | |
||
metakunt2.4 | |
||
Assertion | metakunt2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt2.1 | |
|
2 | metakunt2.2 | |
|
3 | metakunt2.3 | |
|
4 | metakunt2.4 | |
|
5 | eleq1 | |
|
6 | eleq1 | |
|
7 | 1zzd | |
|
8 | 1 | nnzd | |
9 | 8 | ad2antrr | |
10 | 2 | nnzd | |
11 | 10 | ad2antrr | |
12 | 2 | nnge1d | |
13 | 12 | ad2antrr | |
14 | 3 | ad2antrr | |
15 | 7 9 11 13 14 | elfzd | |
16 | eleq1 | |
|
17 | eleq1 | |
|
18 | simpllr | |
|
19 | 1zzd | |
|
20 | 8 | ad2antrr | |
21 | elfznn | |
|
22 | 21 | nnzd | |
23 | 22 | ad2antlr | |
24 | 23 | peano2zd | |
25 | 0p1e1 | |
|
26 | 0red | |
|
27 | 21 | nnred | |
28 | 1red | |
|
29 | 21 | nnnn0d | |
30 | 29 | nn0ge0d | |
31 | 26 27 28 30 | leadd1dd | |
32 | 25 31 | eqbrtrrid | |
33 | 32 | ad2antlr | |
34 | simplr | |
|
35 | neqne | |
|
36 | 35 | adantl | |
37 | 34 36 | fzne2d | |
38 | 37 | adantrr | |
39 | 22 | adantl | |
40 | 8 | adantr | |
41 | 39 40 | zltp1led | |
42 | 41 | adantr | |
43 | 38 42 | mpbid | |
44 | 19 20 24 33 43 | elfzd | |
45 | 44 | anassrs | |
46 | 16 17 18 45 | ifbothda | |
47 | 5 6 15 46 | ifbothda | |
48 | 47 4 | fmptd | |