Metamath Proof Explorer


Theorem metakunt2

Description: A is an endomapping. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses metakunt2.1 φM
metakunt2.2 φI
metakunt2.3 φIM
metakunt2.4 A=x1Mifx=MIifx<Ixx+1
Assertion metakunt2 φA:1M1M

Proof

Step Hyp Ref Expression
1 metakunt2.1 φM
2 metakunt2.2 φI
3 metakunt2.3 φIM
4 metakunt2.4 A=x1Mifx=MIifx<Ixx+1
5 eleq1 I=ifx=MIifx<Ixx+1I1Mifx=MIifx<Ixx+11M
6 eleq1 ifx<Ixx+1=ifx=MIifx<Ixx+1ifx<Ixx+11Mifx=MIifx<Ixx+11M
7 1zzd φx1Mx=M1
8 1 nnzd φM
9 8 ad2antrr φx1Mx=MM
10 2 nnzd φI
11 10 ad2antrr φx1Mx=MI
12 2 nnge1d φ1I
13 12 ad2antrr φx1Mx=M1I
14 3 ad2antrr φx1Mx=MIM
15 7 9 11 13 14 elfzd φx1Mx=MI1M
16 eleq1 x=ifx<Ixx+1x1Mifx<Ixx+11M
17 eleq1 x+1=ifx<Ixx+1x+11Mifx<Ixx+11M
18 simpllr φx1M¬x=Mx<Ix1M
19 1zzd φx1M¬x=M¬x<I1
20 8 ad2antrr φx1M¬x=M¬x<IM
21 elfznn x1Mx
22 21 nnzd x1Mx
23 22 ad2antlr φx1M¬x=M¬x<Ix
24 23 peano2zd φx1M¬x=M¬x<Ix+1
25 0p1e1 0+1=1
26 0red x1M0
27 21 nnred x1Mx
28 1red x1M1
29 21 nnnn0d x1Mx0
30 29 nn0ge0d x1M0x
31 26 27 28 30 leadd1dd x1M0+1x+1
32 25 31 eqbrtrrid x1M1x+1
33 32 ad2antlr φx1M¬x=M¬x<I1x+1
34 simplr φx1M¬x=Mx1M
35 neqne ¬x=MxM
36 35 adantl φx1M¬x=MxM
37 34 36 fzne2d φx1M¬x=Mx<M
38 37 adantrr φx1M¬x=M¬x<Ix<M
39 22 adantl φx1Mx
40 8 adantr φx1MM
41 39 40 zltp1led φx1Mx<Mx+1M
42 41 adantr φx1M¬x=M¬x<Ix<Mx+1M
43 38 42 mpbid φx1M¬x=M¬x<Ix+1M
44 19 20 24 33 43 elfzd φx1M¬x=M¬x<Ix+11M
45 44 anassrs φx1M¬x=M¬x<Ix+11M
46 16 17 18 45 ifbothda φx1M¬x=Mifx<Ixx+11M
47 5 6 15 46 ifbothda φx1Mifx=MIifx<Ixx+11M
48 47 4 fmptd φA:1M1M