Metamath Proof Explorer


Theorem metakunt3

Description: Value of A. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses metakunt3.1 φM
metakunt3.2 φI
metakunt3.3 φIM
metakunt3.4 A=x1Mifx=IMifx<Ixx1
metakunt3.5 φX1M
Assertion metakunt3 φAX=ifX=IMifX<IXX1

Proof

Step Hyp Ref Expression
1 metakunt3.1 φM
2 metakunt3.2 φI
3 metakunt3.3 φIM
4 metakunt3.4 A=x1Mifx=IMifx<Ixx1
5 metakunt3.5 φX1M
6 4 a1i φA=x1Mifx=IMifx<Ixx1
7 eqeq1 x=Xx=IX=I
8 breq1 x=Xx<IX<I
9 id x=Xx=X
10 oveq1 x=Xx1=X1
11 8 9 10 ifbieq12d x=Xifx<Ixx1=ifX<IXX1
12 7 11 ifbieq2d x=Xifx=IMifx<Ixx1=ifX=IMifX<IXX1
13 12 adantl φx=Xifx=IMifx<Ixx1=ifX=IMifX<IXX1
14 1 nnzd φM
15 5 elfzelzd φX
16 1zzd φ1
17 15 16 zsubcld φX1
18 15 17 ifcld φifX<IXX1
19 14 18 ifcld φifX=IMifX<IXX1
20 6 13 5 19 fvmptd φAX=ifX=IMifX<IXX1