| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt3.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt3.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt3.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt3.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt3.5 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 6 | 4 | a1i | ⊢ ( 𝜑  →  𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝐼  ↔  𝑋  =  𝐼 ) ) | 
						
							| 8 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 9 |  | id | ⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  −  1 )  =  ( 𝑋  −  1 ) ) | 
						
							| 11 | 8 9 10 | ifbieq12d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) | 
						
							| 12 | 7 11 | ifbieq2d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) ) | 
						
							| 14 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 15 | 5 | elfzelzd | ⊢ ( 𝜑  →  𝑋  ∈  ℤ ) | 
						
							| 16 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 17 | 15 16 | zsubcld | ⊢ ( 𝜑  →  ( 𝑋  −  1 )  ∈  ℤ ) | 
						
							| 18 | 15 17 | ifcld | ⊢ ( 𝜑  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) )  ∈  ℤ ) | 
						
							| 19 | 14 18 | ifcld | ⊢ ( 𝜑  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  ∈  ℤ ) | 
						
							| 20 | 6 13 5 19 | fvmptd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) ) |