Metamath Proof Explorer


Theorem metakunt4

Description: Value of A. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses metakunt4.1 φM
metakunt4.2 φI
metakunt4.3 φIM
metakunt4.4 A=x1Mifx=MIifx<Ixx+1
metakunt4.5 φX1M
Assertion metakunt4 φAX=ifX=MIifX<IXX+1

Proof

Step Hyp Ref Expression
1 metakunt4.1 φM
2 metakunt4.2 φI
3 metakunt4.3 φIM
4 metakunt4.4 A=x1Mifx=MIifx<Ixx+1
5 metakunt4.5 φX1M
6 4 a1i φA=x1Mifx=MIifx<Ixx+1
7 eqeq1 x=Xx=MX=M
8 breq1 x=Xx<IX<I
9 id x=Xx=X
10 oveq1 x=Xx+1=X+1
11 8 9 10 ifbieq12d x=Xifx<Ixx+1=ifX<IXX+1
12 7 11 ifbieq2d x=Xifx=MIifx<Ixx+1=ifX=MIifX<IXX+1
13 12 adantl φx=Xifx=MIifx<Ixx+1=ifX=MIifX<IXX+1
14 2 nnzd φI
15 5 elfzelzd φX
16 15 peano2zd φX+1
17 15 16 ifcld φifX<IXX+1
18 14 17 ifcld φifX=MIifX<IXX+1
19 6 13 5 18 fvmptd φAX=ifX=MIifX<IXX+1