Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt5.1 | |
|
metakunt5.2 | |
||
metakunt5.3 | |
||
metakunt5.4 | |
||
metakunt5.5 | |
||
metakunt5.6 | |
||
Assertion | metakunt5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt5.1 | |
|
2 | metakunt5.2 | |
|
3 | metakunt5.3 | |
|
4 | metakunt5.4 | |
|
5 | metakunt5.5 | |
|
6 | metakunt5.6 | |
|
7 | 5 | a1i | |
8 | fveq2 | |
|
9 | 8 | adantl | |
10 | 4 | a1i | |
11 | simpr | |
|
12 | 11 | iftrued | |
13 | 1zzd | |
|
14 | 1 | nnzd | |
15 | 2 | nnzd | |
16 | 2 | nnge1d | |
17 | 13 14 15 16 3 | elfzd | |
18 | 10 12 17 1 | fvmptd | |
19 | 18 | adantr | |
20 | 9 19 | eqtrd | |
21 | 20 | eqeq2d | |
22 | iftrue | |
|
23 | 22 | 3ad2ant3 | |
24 | simp2 | |
|
25 | 23 24 | eqtr4d | |
26 | 25 | 3expia | |
27 | 21 26 | sylbid | |
28 | 27 | imp | |
29 | 1 2 3 4 | metakunt1 | |
30 | 29 | adantr | |
31 | 6 | adantr | |
32 | 30 31 | ffvelcdmd | |
33 | 7 28 32 31 | fvmptd | |