Metamath Proof Explorer


Theorem metakunt5

Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt5.1 φM
metakunt5.2 φI
metakunt5.3 φIM
metakunt5.4 A=x1Mifx=IMifx<Ixx1
metakunt5.5 C=y1Mify=MIify<Iyy+1
metakunt5.6 φX1M
Assertion metakunt5 φX=ICAX=X

Proof

Step Hyp Ref Expression
1 metakunt5.1 φM
2 metakunt5.2 φI
3 metakunt5.3 φIM
4 metakunt5.4 A=x1Mifx=IMifx<Ixx1
5 metakunt5.5 C=y1Mify=MIify<Iyy+1
6 metakunt5.6 φX1M
7 5 a1i φX=IC=y1Mify=MIify<Iyy+1
8 fveq2 X=IAX=AI
9 8 adantl φX=IAX=AI
10 4 a1i φA=x1Mifx=IMifx<Ixx1
11 simpr φx=Ix=I
12 11 iftrued φx=Iifx=IMifx<Ixx1=M
13 1zzd φ1
14 1 nnzd φM
15 2 nnzd φI
16 2 nnge1d φ1I
17 13 14 15 16 3 elfzd φI1M
18 10 12 17 1 fvmptd φAI=M
19 18 adantr φX=IAI=M
20 9 19 eqtrd φX=IAX=M
21 20 eqeq2d φX=Iy=AXy=M
22 iftrue y=Mify=MIify<Iyy+1=I
23 22 3ad2ant3 φX=Iy=Mify=MIify<Iyy+1=I
24 simp2 φX=Iy=MX=I
25 23 24 eqtr4d φX=Iy=Mify=MIify<Iyy+1=X
26 25 3expia φX=Iy=Mify=MIify<Iyy+1=X
27 21 26 sylbid φX=Iy=AXify=MIify<Iyy+1=X
28 27 imp φX=Iy=AXify=MIify<Iyy+1=X
29 1 2 3 4 metakunt1 φA:1M1M
30 29 adantr φX=IA:1M1M
31 6 adantr φX=IX1M
32 30 31 ffvelcdmd φX=IAX1M
33 7 28 32 31 fvmptd φX=ICAX=X