Metamath Proof Explorer


Theorem metcld

Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of Kreyszig p. 30. (Contributed by NM, 11-Nov-2007) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypothesis metcld.2 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion metcld ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) → 𝑥𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 metcld.2 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
3 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
4 3 sseq2d ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑆𝑋𝑆 𝐽 ) )
5 4 biimpa ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → 𝑆 𝐽 )
6 eqid 𝐽 = 𝐽
7 6 iscld4 ( ( 𝐽 ∈ Top ∧ 𝑆 𝐽 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) )
8 2 5 7 syl2an2r ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) )
9 19.23v ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) → 𝑥𝑆 ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) → 𝑥𝑆 ) )
10 simpl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
11 simpr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → 𝑆𝑋 )
12 1 10 11 metelcls ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) ) )
13 12 imbi1d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥𝑆 ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) → 𝑥𝑆 ) ) )
14 9 13 bitr4id ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) → 𝑥𝑆 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥𝑆 ) ) )
15 14 albidv ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ∀ 𝑥𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) → 𝑥𝑆 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥𝑆 ) ) )
16 dfss2 ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥𝑆 ) )
17 15 16 bitr4di ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ∀ 𝑥𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) → 𝑥𝑆 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) )
18 8 17 bitr4d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑥 ) → 𝑥𝑆 ) ) )