| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metcld.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 | 1 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 3 | 1 | mopnuni | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 4 | 3 | sseq2d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑆  ⊆  𝑋  ↔  𝑆  ⊆  ∪  𝐽 ) ) | 
						
							| 5 | 4 | biimpa | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝑆  ⊆  ∪  𝐽 ) | 
						
							| 6 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 7 | 6 | iscld4 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆 ) ) | 
						
							| 8 | 2 5 7 | syl2an2r | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆 ) ) | 
						
							| 9 |  | 19.23v | ⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 12 | 1 10 11 | metelcls | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ↔  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) | 
						
							| 13 | 12 | imbi1d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  →  𝑥  ∈  𝑆 )  ↔  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 14 | 9 13 | bitr4id | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ( 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 15 | 14 | albidv | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ∀ 𝑥 ( 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 16 |  | df-ss | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆  ↔  ∀ 𝑥 ( 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  →  𝑥  ∈  𝑆 ) ) | 
						
							| 17 | 15 16 | bitr4di | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆 ) ) | 
						
							| 18 | 8 17 | bitr4d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ↔  ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 ) ) ) |