| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metcld.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 | 1 | metcld | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ↔  ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 3 |  | 19.23v | ⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 ) ) | 
						
							| 4 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 5 | 4 | elima2 | ⊢ ( 𝑥  ∈  ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) )  ↔  ∃ 𝑓 ( 𝑓  ∈  ( 𝑆  ↑m  ℕ )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑆  ⊆  𝑋  →  𝑆  ⊆  𝑋 ) | 
						
							| 7 |  | elfvdm | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  ∈  dom  ∞Met ) | 
						
							| 8 |  | ssexg | ⊢ ( ( 𝑆  ⊆  𝑋  ∧  𝑋  ∈  dom  ∞Met )  →  𝑆  ∈  V ) | 
						
							| 9 | 6 7 8 | syl2anr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝑆  ∈  V ) | 
						
							| 10 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 11 |  | elmapg | ⊢ ( ( 𝑆  ∈  V  ∧  ℕ  ∈  V )  →  ( 𝑓  ∈  ( 𝑆  ↑m  ℕ )  ↔  𝑓 : ℕ ⟶ 𝑆 ) ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑓  ∈  ( 𝑆  ↑m  ℕ )  ↔  𝑓 : ℕ ⟶ 𝑆 ) ) | 
						
							| 13 | 12 | anbi1d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑓  ∈  ( 𝑆  ↑m  ℕ )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ↔  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) | 
						
							| 14 | 13 | exbidv | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∃ 𝑓 ( 𝑓  ∈  ( 𝑆  ↑m  ℕ )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ↔  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) | 
						
							| 15 | 5 14 | bitr2id | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ↔  𝑥  ∈  ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) ) ) ) | 
						
							| 16 | 15 | imbi1d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ( 𝑥  ∈  ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 17 | 3 16 | bitrid | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ( 𝑥  ∈  ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 18 | 17 | albidv | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ∀ 𝑥 ( 𝑥  ∈  ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 19 |  | df-ss | ⊢ ( ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) )  ⊆  𝑆  ↔  ∀ 𝑥 ( 𝑥  ∈  ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) )  →  𝑥  ∈  𝑆 ) ) | 
						
							| 20 | 18 19 | bitr4di | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑆 )  ↔  ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) )  ⊆  𝑆 ) ) | 
						
							| 21 | 2 20 | bitrd | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( ⇝𝑡 ‘ 𝐽 )  “  ( 𝑆  ↑m  ℕ ) )  ⊆  𝑆 ) ) |