| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metcld.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 | 1 | metcld |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) ) ) | 
						
							| 3 |  | 19.23v |  |-  ( A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) ) | 
						
							| 4 |  | vex |  |-  x e. _V | 
						
							| 5 | 4 | elima2 |  |-  ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) <-> E. f ( f e. ( S ^m NN ) /\ f ( ~~>t ` J ) x ) ) | 
						
							| 6 |  | id |  |-  ( S C_ X -> S C_ X ) | 
						
							| 7 |  | elfvdm |  |-  ( D e. ( *Met ` X ) -> X e. dom *Met ) | 
						
							| 8 |  | ssexg |  |-  ( ( S C_ X /\ X e. dom *Met ) -> S e. _V ) | 
						
							| 9 | 6 7 8 | syl2anr |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> S e. _V ) | 
						
							| 10 |  | nnex |  |-  NN e. _V | 
						
							| 11 |  | elmapg |  |-  ( ( S e. _V /\ NN e. _V ) -> ( f e. ( S ^m NN ) <-> f : NN --> S ) ) | 
						
							| 12 | 9 10 11 | sylancl |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( f e. ( S ^m NN ) <-> f : NN --> S ) ) | 
						
							| 13 | 12 | anbi1d |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( ( f e. ( S ^m NN ) /\ f ( ~~>t ` J ) x ) <-> ( f : NN --> S /\ f ( ~~>t ` J ) x ) ) ) | 
						
							| 14 | 13 | exbidv |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( E. f ( f e. ( S ^m NN ) /\ f ( ~~>t ` J ) x ) <-> E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) ) ) | 
						
							| 15 | 5 14 | bitr2id |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) <-> x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) ) ) | 
						
							| 16 | 15 | imbi1d |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) -> x e. S ) ) ) | 
						
							| 17 | 3 16 | bitrid |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) -> x e. S ) ) ) | 
						
							| 18 | 17 | albidv |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> A. x ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) -> x e. S ) ) ) | 
						
							| 19 |  | df-ss |  |-  ( ( ( ~~>t ` J ) " ( S ^m NN ) ) C_ S <-> A. x ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) -> x e. S ) ) | 
						
							| 20 | 18 19 | bitr4di |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( ( ~~>t ` J ) " ( S ^m NN ) ) C_ S ) ) | 
						
							| 21 | 2 20 | bitrd |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( ~~>t ` J ) " ( S ^m NN ) ) C_ S ) ) |