| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caubl.2 |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 2 |  | caubl.3 |  |-  ( ph -> F : NN --> ( X X. RR+ ) ) | 
						
							| 3 |  | caubl.4 |  |-  ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) | 
						
							| 4 |  | caubl.5 |  |-  ( ph -> A. r e. RR+ E. n e. NN ( 2nd ` ( F ` n ) ) < r ) | 
						
							| 5 |  | 2fveq3 |  |-  ( r = n -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` n ) ) ) | 
						
							| 6 | 5 | sseq1d |  |-  ( r = n -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 7 | 6 | imbi2d |  |-  ( r = n -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) | 
						
							| 8 |  | 2fveq3 |  |-  ( r = k -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 9 | 8 | sseq1d |  |-  ( r = k -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 10 | 9 | imbi2d |  |-  ( r = k -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) | 
						
							| 11 |  | 2fveq3 |  |-  ( r = ( k + 1 ) -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 12 | 11 | sseq1d |  |-  ( r = ( k + 1 ) -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 13 | 12 | imbi2d |  |-  ( r = ( k + 1 ) -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) | 
						
							| 14 |  | ssid |  |-  ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) | 
						
							| 15 | 14 | 2a1i |  |-  ( n e. ZZ -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 16 |  | eluznn |  |-  ( ( n e. NN /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) | 
						
							| 17 |  | fvoveq1 |  |-  ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( n = k -> ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 19 |  | 2fveq3 |  |-  ( n = k -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 20 | 18 19 | sseq12d |  |-  ( n = k -> ( ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) ) | 
						
							| 21 | 20 | rspccva |  |-  ( ( A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) /\ k e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 22 | 3 16 21 | syl2an |  |-  ( ( ph /\ ( n e. NN /\ k e. ( ZZ>= ` n ) ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 23 | 22 | anassrs |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 24 |  | sstr2 |  |-  ( ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 26 | 25 | expcom |  |-  ( k e. ( ZZ>= ` n ) -> ( ( ph /\ n e. NN ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) | 
						
							| 27 | 26 | a2d |  |-  ( k e. ( ZZ>= ` n ) -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) | 
						
							| 28 | 7 10 13 10 15 27 | uzind4 |  |-  ( k e. ( ZZ>= ` n ) -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 29 | 28 | com12 |  |-  ( ( ph /\ n e. NN ) -> ( k e. ( ZZ>= ` n ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 30 | 29 | ad2ant2r |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) | 
						
							| 31 |  | relxp |  |-  Rel ( X X. RR+ ) | 
						
							| 32 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> F : NN --> ( X X. RR+ ) ) | 
						
							| 33 |  | simplrl |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> n e. NN ) | 
						
							| 34 | 32 33 | ffvelcdmd |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` n ) e. ( X X. RR+ ) ) | 
						
							| 35 |  | 1st2nd |  |-  ( ( Rel ( X X. RR+ ) /\ ( F ` n ) e. ( X X. RR+ ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 36 | 31 34 35 | sylancr |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) | 
						
							| 38 |  | df-ov |  |-  ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 39 | 37 38 | eqtr4di |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 40 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> D e. ( *Met ` X ) ) | 
						
							| 41 |  | xp1st |  |-  ( ( F ` n ) e. ( X X. RR+ ) -> ( 1st ` ( F ` n ) ) e. X ) | 
						
							| 42 | 34 41 | syl |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` n ) ) e. X ) | 
						
							| 43 |  | xp2nd |  |-  ( ( F ` n ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` n ) ) e. RR+ ) | 
						
							| 44 | 34 43 | syl |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) e. RR+ ) | 
						
							| 45 | 44 | rpxrd |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) e. RR* ) | 
						
							| 46 |  | simpllr |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> r e. RR+ ) | 
						
							| 47 | 46 | rpxrd |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> r e. RR* ) | 
						
							| 48 |  | simplrr |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) < r ) | 
						
							| 49 |  | rpre |  |-  ( ( 2nd ` ( F ` n ) ) e. RR+ -> ( 2nd ` ( F ` n ) ) e. RR ) | 
						
							| 50 |  | rpre |  |-  ( r e. RR+ -> r e. RR ) | 
						
							| 51 |  | ltle |  |-  ( ( ( 2nd ` ( F ` n ) ) e. RR /\ r e. RR ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) | 
						
							| 52 | 49 50 51 | syl2an |  |-  ( ( ( 2nd ` ( F ` n ) ) e. RR+ /\ r e. RR+ ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) | 
						
							| 53 | 44 46 52 | syl2anc |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) | 
						
							| 54 | 48 53 | mpd |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) <_ r ) | 
						
							| 55 |  | ssbl |  |-  ( ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` n ) ) e. X ) /\ ( ( 2nd ` ( F ` n ) ) e. RR* /\ r e. RR* ) /\ ( 2nd ` ( F ` n ) ) <_ r ) -> ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) | 
						
							| 56 | 40 42 45 47 54 55 | syl221anc |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) | 
						
							| 57 | 39 56 | eqsstrd |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) | 
						
							| 58 |  | sstr2 |  |-  ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) | 
						
							| 59 | 57 58 | syl5com |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) | 
						
							| 60 |  | simprl |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> n e. NN ) | 
						
							| 61 | 60 16 | sylan |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) | 
						
							| 62 | 32 61 | ffvelcdmd |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) e. ( X X. RR+ ) ) | 
						
							| 63 |  | xp1st |  |-  ( ( F ` k ) e. ( X X. RR+ ) -> ( 1st ` ( F ` k ) ) e. X ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. X ) | 
						
							| 65 |  | xp2nd |  |-  ( ( F ` k ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) | 
						
							| 66 | 62 65 | syl |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) | 
						
							| 67 |  | blcntr |  |-  ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` k ) ) e. X /\ ( 2nd ` ( F ` k ) ) e. RR+ ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 68 | 40 64 66 67 | syl3anc |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 69 |  | 1st2nd |  |-  ( ( Rel ( X X. RR+ ) /\ ( F ` k ) e. ( X X. RR+ ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 70 | 31 62 69 | sylancr |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 71 | 70 | fveq2d |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) | 
						
							| 72 |  | df-ov |  |-  ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 73 | 71 72 | eqtr4di |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 74 | 68 73 | eleqtrrd |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 75 |  | ssel |  |-  ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) -> ( ( 1st ` ( F ` k ) ) e. ( ( ball ` D ) ` ( F ` k ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) | 
						
							| 76 | 59 74 75 | syl6ci |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) | 
						
							| 77 |  | elbl2 |  |-  ( ( ( D e. ( *Met ` X ) /\ r e. RR* ) /\ ( ( 1st ` ( F ` n ) ) e. X /\ ( 1st ` ( F ` k ) ) e. X ) ) -> ( ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) <-> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) | 
						
							| 78 | 40 47 42 64 77 | syl22anc |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) <-> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) | 
						
							| 79 | 76 78 | sylibd |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) | 
						
							| 80 | 79 | ex |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) ) | 
						
							| 81 | 30 80 | mpdd |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) | 
						
							| 82 | 81 | ralrimiv |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) | 
						
							| 83 | 82 | expr |  |-  ( ( ( ph /\ r e. RR+ ) /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) < r -> A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) | 
						
							| 84 | 83 | reximdva |  |-  ( ( ph /\ r e. RR+ ) -> ( E. n e. NN ( 2nd ` ( F ` n ) ) < r -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) | 
						
							| 85 | 84 | ralimdva |  |-  ( ph -> ( A. r e. RR+ E. n e. NN ( 2nd ` ( F ` n ) ) < r -> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) | 
						
							| 86 | 4 85 | mpd |  |-  ( ph -> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) | 
						
							| 87 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 88 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 89 |  | fvco3 |  |-  ( ( F : NN --> ( X X. RR+ ) /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) | 
						
							| 90 | 2 89 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) | 
						
							| 91 |  | fvco3 |  |-  ( ( F : NN --> ( X X. RR+ ) /\ n e. NN ) -> ( ( 1st o. F ) ` n ) = ( 1st ` ( F ` n ) ) ) | 
						
							| 92 | 2 91 | sylan |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st o. F ) ` n ) = ( 1st ` ( F ` n ) ) ) | 
						
							| 93 |  | 1stcof |  |-  ( F : NN --> ( X X. RR+ ) -> ( 1st o. F ) : NN --> X ) | 
						
							| 94 | 2 93 | syl |  |-  ( ph -> ( 1st o. F ) : NN --> X ) | 
						
							| 95 | 87 1 88 90 92 94 | iscauf |  |-  ( ph -> ( ( 1st o. F ) e. ( Cau ` D ) <-> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) | 
						
							| 96 | 86 95 | mpbird |  |-  ( ph -> ( 1st o. F ) e. ( Cau ` D ) ) |