| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caubl.2 |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 2 |  | caubl.3 |  |-  ( ph -> F : NN --> ( X X. RR+ ) ) | 
						
							| 3 |  | caubl.4 |  |-  ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) | 
						
							| 4 |  | caublcls.6 |  |-  J = ( MetOpen ` D ) | 
						
							| 5 |  | eqid |  |-  ( ZZ>= ` A ) = ( ZZ>= ` A ) | 
						
							| 6 | 1 | 3ad2ant1 |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> D e. ( *Met ` X ) ) | 
						
							| 7 | 4 | mopntopon |  |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> J e. ( TopOn ` X ) ) | 
						
							| 9 |  | simp3 |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> A e. NN ) | 
						
							| 10 | 9 | nnzd |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> A e. ZZ ) | 
						
							| 11 |  | simp2 |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 1st o. F ) ( ~~>t ` J ) P ) | 
						
							| 12 |  | 2fveq3 |  |-  ( r = A -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` A ) ) ) | 
						
							| 13 | 12 | sseq1d |  |-  ( r = A -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) | 
						
							| 14 | 13 | imbi2d |  |-  ( r = A -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) | 
						
							| 15 |  | 2fveq3 |  |-  ( r = k -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 16 | 15 | sseq1d |  |-  ( r = k -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) | 
						
							| 17 | 16 | imbi2d |  |-  ( r = k -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) | 
						
							| 18 |  | 2fveq3 |  |-  ( r = ( k + 1 ) -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 19 | 18 | sseq1d |  |-  ( r = ( k + 1 ) -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) | 
						
							| 20 | 19 | imbi2d |  |-  ( r = ( k + 1 ) -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) | 
						
							| 21 |  | ssid |  |-  ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) | 
						
							| 22 | 21 | 2a1i |  |-  ( A e. ZZ -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) | 
						
							| 23 |  | eluznn |  |-  ( ( A e. NN /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) | 
						
							| 24 |  | fvoveq1 |  |-  ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( n = k -> ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 26 |  | 2fveq3 |  |-  ( n = k -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 27 | 25 26 | sseq12d |  |-  ( n = k -> ( ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) ) | 
						
							| 28 | 27 | rspccva |  |-  ( ( A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) /\ k e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 29 | 3 23 28 | syl2an |  |-  ( ( ph /\ ( A e. NN /\ k e. ( ZZ>= ` A ) ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 30 | 29 | anassrs |  |-  ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 31 |  | sstr2 |  |-  ( ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) | 
						
							| 33 | 32 | expcom |  |-  ( k e. ( ZZ>= ` A ) -> ( ( ph /\ A e. NN ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) | 
						
							| 34 | 33 | a2d |  |-  ( k e. ( ZZ>= ` A ) -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) | 
						
							| 35 | 14 17 20 17 22 34 | uzind4 |  |-  ( k e. ( ZZ>= ` A ) -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) | 
						
							| 36 | 35 | impcom |  |-  ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) | 
						
							| 37 | 36 | 3adantl2 |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) | 
						
							| 38 | 6 | adantr |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> D e. ( *Met ` X ) ) | 
						
							| 39 |  | simpl1 |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ph ) | 
						
							| 40 | 39 2 | syl |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> F : NN --> ( X X. RR+ ) ) | 
						
							| 41 | 23 | 3ad2antl3 |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) | 
						
							| 42 | 40 41 | ffvelcdmd |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) e. ( X X. RR+ ) ) | 
						
							| 43 |  | xp1st |  |-  ( ( F ` k ) e. ( X X. RR+ ) -> ( 1st ` ( F ` k ) ) e. X ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 1st ` ( F ` k ) ) e. X ) | 
						
							| 45 |  | xp2nd |  |-  ( ( F ` k ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) | 
						
							| 46 | 42 45 | syl |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) | 
						
							| 47 |  | blcntr |  |-  ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` k ) ) e. X /\ ( 2nd ` ( F ` k ) ) e. RR+ ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 48 | 38 44 46 47 | syl3anc |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 49 |  | fvco3 |  |-  ( ( F : NN --> ( X X. RR+ ) /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) | 
						
							| 50 | 40 41 49 | syl2anc |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) | 
						
							| 51 |  | 1st2nd2 |  |-  ( ( F ` k ) e. ( X X. RR+ ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 52 | 42 51 | syl |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 53 | 52 | fveq2d |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) | 
						
							| 54 |  | df-ov |  |-  ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 55 | 53 54 | eqtr4di |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 56 | 48 50 55 | 3eltr4d |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) e. ( ( ball ` D ) ` ( F ` k ) ) ) | 
						
							| 57 | 37 56 | sseldd |  |-  ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) e. ( ( ball ` D ) ` ( F ` A ) ) ) | 
						
							| 58 | 2 | ffvelcdmda |  |-  ( ( ph /\ A e. NN ) -> ( F ` A ) e. ( X X. RR+ ) ) | 
						
							| 59 | 58 | 3adant2 |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( F ` A ) e. ( X X. RR+ ) ) | 
						
							| 60 |  | 1st2nd2 |  |-  ( ( F ` A ) e. ( X X. RR+ ) -> ( F ` A ) = <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) | 
						
							| 61 | 59 60 | syl |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( F ` A ) = <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) | 
						
							| 62 | 61 | fveq2d |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) ) | 
						
							| 63 |  | df-ov |  |-  ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) | 
						
							| 64 | 62 63 | eqtr4di |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) = ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) ) | 
						
							| 65 |  | xp1st |  |-  ( ( F ` A ) e. ( X X. RR+ ) -> ( 1st ` ( F ` A ) ) e. X ) | 
						
							| 66 | 59 65 | syl |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 1st ` ( F ` A ) ) e. X ) | 
						
							| 67 |  | xp2nd |  |-  ( ( F ` A ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` A ) ) e. RR+ ) | 
						
							| 68 | 59 67 | syl |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 2nd ` ( F ` A ) ) e. RR+ ) | 
						
							| 69 | 68 | rpxrd |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 2nd ` ( F ` A ) ) e. RR* ) | 
						
							| 70 |  | blssm |  |-  ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` A ) ) e. X /\ ( 2nd ` ( F ` A ) ) e. RR* ) -> ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) C_ X ) | 
						
							| 71 | 6 66 69 70 | syl3anc |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) C_ X ) | 
						
							| 72 | 64 71 | eqsstrd |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ X ) | 
						
							| 73 | 5 8 10 11 57 72 | lmcls |  |-  ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> P e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( F ` A ) ) ) ) |