Step |
Hyp |
Ref |
Expression |
1 |
|
xmetdcn2.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
metdcn2.2 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
3 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
4 |
|
eqid |
⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) |
5 |
1 4
|
xmetdcn |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ordTop ‘ ≤ ) ) ) |
6 |
3 5
|
syl |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ordTop ‘ ≤ ) ) ) |
7 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
8 |
|
metf |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
9 |
8
|
frnd |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ran 𝐷 ⊆ ℝ ) |
10 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
11 |
10
|
a1i |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ℝ ⊆ ℝ* ) |
12 |
|
cnrest2 |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ran 𝐷 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → ( 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ordTop ‘ ≤ ) ) ↔ 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) ) ) |
13 |
7 9 11 12
|
mp3an2i |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ordTop ‘ ≤ ) ) ↔ 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) ) ) |
14 |
6 13
|
mpbid |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) ) |
15 |
|
eqid |
⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
16 |
15
|
xrtgioo |
⊢ ( topGen ‘ ran (,) ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
17 |
2 16
|
eqtri |
⊢ 𝐾 = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
18 |
17
|
oveq2i |
⊢ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) = ( ( 𝐽 ×t 𝐽 ) Cn ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
19 |
14 18
|
eleqtrrdi |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |