| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmetdcn2.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
metdcn2.2 |
|- K = ( topGen ` ran (,) ) |
| 3 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 4 |
|
eqid |
|- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
| 5 |
1 4
|
xmetdcn |
|- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) ) |
| 6 |
3 5
|
syl |
|- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) ) |
| 7 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
| 8 |
|
metf |
|- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
| 9 |
8
|
frnd |
|- ( D e. ( Met ` X ) -> ran D C_ RR ) |
| 10 |
|
ressxr |
|- RR C_ RR* |
| 11 |
10
|
a1i |
|- ( D e. ( Met ` X ) -> RR C_ RR* ) |
| 12 |
|
cnrest2 |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ran D C_ RR /\ RR C_ RR* ) -> ( D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) <-> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) ) |
| 13 |
7 9 11 12
|
mp3an2i |
|- ( D e. ( Met ` X ) -> ( D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) <-> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) ) |
| 14 |
6 13
|
mpbid |
|- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) |
| 15 |
|
eqid |
|- ( ( ordTop ` <_ ) |`t RR ) = ( ( ordTop ` <_ ) |`t RR ) |
| 16 |
15
|
xrtgioo |
|- ( topGen ` ran (,) ) = ( ( ordTop ` <_ ) |`t RR ) |
| 17 |
2 16
|
eqtri |
|- K = ( ( ordTop ` <_ ) |`t RR ) |
| 18 |
17
|
oveq2i |
|- ( ( J tX J ) Cn K ) = ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) |
| 19 |
14 18
|
eleqtrrdi |
|- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |