Step |
Hyp |
Ref |
Expression |
1 |
|
xmetdcn2.1 |
|- J = ( MetOpen ` D ) |
2 |
|
metdcn2.2 |
|- K = ( topGen ` ran (,) ) |
3 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
4 |
|
eqid |
|- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
5 |
1 4
|
xmetdcn |
|- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) ) |
6 |
3 5
|
syl |
|- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) ) |
7 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
8 |
|
metf |
|- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
9 |
8
|
frnd |
|- ( D e. ( Met ` X ) -> ran D C_ RR ) |
10 |
|
ressxr |
|- RR C_ RR* |
11 |
10
|
a1i |
|- ( D e. ( Met ` X ) -> RR C_ RR* ) |
12 |
|
cnrest2 |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ran D C_ RR /\ RR C_ RR* ) -> ( D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) <-> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) ) |
13 |
7 9 11 12
|
mp3an2i |
|- ( D e. ( Met ` X ) -> ( D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) <-> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) ) |
14 |
6 13
|
mpbid |
|- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) |
15 |
|
eqid |
|- ( ( ordTop ` <_ ) |`t RR ) = ( ( ordTop ` <_ ) |`t RR ) |
16 |
15
|
xrtgioo |
|- ( topGen ` ran (,) ) = ( ( ordTop ` <_ ) |`t RR ) |
17 |
2 16
|
eqtri |
|- K = ( ( ordTop ` <_ ) |`t RR ) |
18 |
17
|
oveq2i |
|- ( ( J tX J ) Cn K ) = ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) |
19 |
14 18
|
eleqtrrdi |
|- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |