| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmetdcn2.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
metdcn.2 |
|- K = ( TopOpen ` CCfld ) |
| 3 |
2
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( K |`t RR ) |
| 4 |
3
|
oveq2i |
|- ( ( J tX J ) Cn ( topGen ` ran (,) ) ) = ( ( J tX J ) Cn ( K |`t RR ) ) |
| 5 |
2
|
cnfldtop |
|- K e. Top |
| 6 |
|
cnrest2r |
|- ( K e. Top -> ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) |
| 8 |
4 7
|
eqsstri |
|- ( ( J tX J ) Cn ( topGen ` ran (,) ) ) C_ ( ( J tX J ) Cn K ) |
| 9 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 10 |
1 9
|
metdcn2 |
|- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn ( topGen ` ran (,) ) ) ) |
| 11 |
8 10
|
sselid |
|- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |