| Step |
Hyp |
Ref |
Expression |
| 1 |
|
msdcn.x |
|- X = ( Base ` M ) |
| 2 |
|
msdcn.d |
|- D = ( dist ` M ) |
| 3 |
|
msdcn.j |
|- J = ( TopOpen ` M ) |
| 4 |
|
msdcn.2 |
|- K = ( topGen ` ran (,) ) |
| 5 |
1 2
|
msmet2 |
|- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( Met ` X ) ) |
| 6 |
|
eqid |
|- ( MetOpen ` ( D |` ( X X. X ) ) ) = ( MetOpen ` ( D |` ( X X. X ) ) ) |
| 7 |
6 4
|
metdcn2 |
|- ( ( D |` ( X X. X ) ) e. ( Met ` X ) -> ( D |` ( X X. X ) ) e. ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) |
| 8 |
5 7
|
syl |
|- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) |
| 9 |
2
|
reseq1i |
|- ( D |` ( X X. X ) ) = ( ( dist ` M ) |` ( X X. X ) ) |
| 10 |
3 1 9
|
mstopn |
|- ( M e. MetSp -> J = ( MetOpen ` ( D |` ( X X. X ) ) ) ) |
| 11 |
10 10
|
oveq12d |
|- ( M e. MetSp -> ( J tX J ) = ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) ) |
| 12 |
11
|
oveq1d |
|- ( M e. MetSp -> ( ( J tX J ) Cn K ) = ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) |
| 13 |
8 12
|
eleqtrrd |
|- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( ( J tX J ) Cn K ) ) |