Step |
Hyp |
Ref |
Expression |
1 |
|
msdcn.x |
⊢ 𝑋 = ( Base ‘ 𝑀 ) |
2 |
|
msdcn.d |
⊢ 𝐷 = ( dist ‘ 𝑀 ) |
3 |
|
msdcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑀 ) |
4 |
|
msdcn.2 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
5 |
1 2
|
msmet2 |
⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) |
6 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) |
7 |
6 4
|
metdcn2 |
⊢ ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ×t ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) Cn 𝐾 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ×t ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) Cn 𝐾 ) ) |
9 |
2
|
reseq1i |
⊢ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) |
10 |
3 1 9
|
mstopn |
⊢ ( 𝑀 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) |
11 |
10 10
|
oveq12d |
⊢ ( 𝑀 ∈ MetSp → ( 𝐽 ×t 𝐽 ) = ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ×t ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑀 ∈ MetSp → ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) = ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ×t ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) Cn 𝐾 ) ) |
13 |
8 12
|
eleqtrrd |
⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |