| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpt1ds.d |
|- D = ( dist ` G ) |
| 2 |
|
cnmpt1ds.j |
|- J = ( TopOpen ` G ) |
| 3 |
|
cnmpt1ds.r |
|- R = ( topGen ` ran (,) ) |
| 4 |
|
cnmpt1ds.g |
|- ( ph -> G e. MetSp ) |
| 5 |
|
cnmpt1ds.k |
|- ( ph -> K e. ( TopOn ` X ) ) |
| 6 |
|
cnmpt1ds.a |
|- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
| 7 |
|
cnmpt1ds.b |
|- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
| 8 |
|
mstps |
|- ( G e. MetSp -> G e. TopSp ) |
| 9 |
4 8
|
syl |
|- ( ph -> G e. TopSp ) |
| 10 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 11 |
10 2
|
istps |
|- ( G e. TopSp <-> J e. ( TopOn ` ( Base ` G ) ) ) |
| 12 |
9 11
|
sylib |
|- ( ph -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 13 |
|
cnf2 |
|- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. X |-> A ) e. ( K Cn J ) ) -> ( x e. X |-> A ) : X --> ( Base ` G ) ) |
| 14 |
5 12 6 13
|
syl3anc |
|- ( ph -> ( x e. X |-> A ) : X --> ( Base ` G ) ) |
| 15 |
14
|
fvmptelcdm |
|- ( ( ph /\ x e. X ) -> A e. ( Base ` G ) ) |
| 16 |
|
cnf2 |
|- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. X |-> B ) e. ( K Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` G ) ) |
| 17 |
5 12 7 16
|
syl3anc |
|- ( ph -> ( x e. X |-> B ) : X --> ( Base ` G ) ) |
| 18 |
17
|
fvmptelcdm |
|- ( ( ph /\ x e. X ) -> B e. ( Base ` G ) ) |
| 19 |
15 18
|
ovresd |
|- ( ( ph /\ x e. X ) -> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) = ( A D B ) ) |
| 20 |
19
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) ) = ( x e. X |-> ( A D B ) ) ) |
| 21 |
10 1 2 3
|
msdcn |
|- ( G e. MetSp -> ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( ( J tX J ) Cn R ) ) |
| 22 |
4 21
|
syl |
|- ( ph -> ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( ( J tX J ) Cn R ) ) |
| 23 |
5 6 7 22
|
cnmpt12f |
|- ( ph -> ( x e. X |-> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) ) e. ( K Cn R ) ) |
| 24 |
20 23
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( A D B ) ) e. ( K Cn R ) ) |