Metamath Proof Explorer


Theorem cnmpt1ds

Description: Continuity of the metric function; analogue of cnmpt12f which cannot be used directly because D is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses cnmpt1ds.d D = dist G
cnmpt1ds.j J = TopOpen G
cnmpt1ds.r R = topGen ran .
cnmpt1ds.g φ G MetSp
cnmpt1ds.k φ K TopOn X
cnmpt1ds.a φ x X A K Cn J
cnmpt1ds.b φ x X B K Cn J
Assertion cnmpt1ds φ x X A D B K Cn R

Proof

Step Hyp Ref Expression
1 cnmpt1ds.d D = dist G
2 cnmpt1ds.j J = TopOpen G
3 cnmpt1ds.r R = topGen ran .
4 cnmpt1ds.g φ G MetSp
5 cnmpt1ds.k φ K TopOn X
6 cnmpt1ds.a φ x X A K Cn J
7 cnmpt1ds.b φ x X B K Cn J
8 mstps G MetSp G TopSp
9 4 8 syl φ G TopSp
10 eqid Base G = Base G
11 10 2 istps G TopSp J TopOn Base G
12 9 11 sylib φ J TopOn Base G
13 cnf2 K TopOn X J TopOn Base G x X A K Cn J x X A : X Base G
14 5 12 6 13 syl3anc φ x X A : X Base G
15 14 fvmptelrn φ x X A Base G
16 cnf2 K TopOn X J TopOn Base G x X B K Cn J x X B : X Base G
17 5 12 7 16 syl3anc φ x X B : X Base G
18 17 fvmptelrn φ x X B Base G
19 15 18 ovresd φ x X A D Base G × Base G B = A D B
20 19 mpteq2dva φ x X A D Base G × Base G B = x X A D B
21 10 1 2 3 msdcn G MetSp D Base G × Base G J × t J Cn R
22 4 21 syl φ D Base G × Base G J × t J Cn R
23 5 6 7 22 cnmpt12f φ x X A D Base G × Base G B K Cn R
24 20 23 eqeltrrd φ x X A D B K Cn R