| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmetdcn2.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
xmetdcn.2 |
|- K = ( ordTop ` <_ ) |
| 3 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
| 4 |
2 3
|
eqeltri |
|- K e. ( TopOn ` RR* ) |
| 5 |
|
eqid |
|- ( dist ` RR*s ) = ( dist ` RR*s ) |
| 6 |
|
eqid |
|- ( MetOpen ` ( dist ` RR*s ) ) = ( MetOpen ` ( dist ` RR*s ) ) |
| 7 |
5 6
|
xrsmopn |
|- ( ordTop ` <_ ) C_ ( MetOpen ` ( dist ` RR*s ) ) |
| 8 |
2 7
|
eqsstri |
|- K C_ ( MetOpen ` ( dist ` RR*s ) ) |
| 9 |
5
|
xrsxmet |
|- ( dist ` RR*s ) e. ( *Met ` RR* ) |
| 10 |
6
|
mopnuni |
|- ( ( dist ` RR*s ) e. ( *Met ` RR* ) -> RR* = U. ( MetOpen ` ( dist ` RR*s ) ) ) |
| 11 |
9 10
|
ax-mp |
|- RR* = U. ( MetOpen ` ( dist ` RR*s ) ) |
| 12 |
11
|
cnss2 |
|- ( ( K e. ( TopOn ` RR* ) /\ K C_ ( MetOpen ` ( dist ` RR*s ) ) ) -> ( ( J tX J ) Cn ( MetOpen ` ( dist ` RR*s ) ) ) C_ ( ( J tX J ) Cn K ) ) |
| 13 |
4 8 12
|
mp2an |
|- ( ( J tX J ) Cn ( MetOpen ` ( dist ` RR*s ) ) ) C_ ( ( J tX J ) Cn K ) |
| 14 |
1 5 6
|
xmetdcn2 |
|- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn ( MetOpen ` ( dist ` RR*s ) ) ) ) |
| 15 |
13 14
|
sselid |
|- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |