Metamath Proof Explorer


Theorem xmetdcn

Description: The metric function of an extended metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses xmetdcn2.1 J=MetOpenD
xmetdcn.2 K=ordTop
Assertion xmetdcn D∞MetXDJ×tJCnK

Proof

Step Hyp Ref Expression
1 xmetdcn2.1 J=MetOpenD
2 xmetdcn.2 K=ordTop
3 letopon ordTopTopOn*
4 2 3 eqeltri KTopOn*
5 eqid dist𝑠*=dist𝑠*
6 eqid MetOpendist𝑠*=MetOpendist𝑠*
7 5 6 xrsmopn ordTopMetOpendist𝑠*
8 2 7 eqsstri KMetOpendist𝑠*
9 5 xrsxmet dist𝑠*∞Met*
10 6 mopnuni dist𝑠*∞Met**=MetOpendist𝑠*
11 9 10 ax-mp *=MetOpendist𝑠*
12 11 cnss2 KTopOn*KMetOpendist𝑠*J×tJCnMetOpendist𝑠*J×tJCnK
13 4 8 12 mp2an J×tJCnMetOpendist𝑠*J×tJCnK
14 1 5 6 xmetdcn2 D∞MetXDJ×tJCnMetOpendist𝑠*
15 13 14 sselid D∞MetXDJ×tJCnK