Metamath Proof Explorer


Theorem xrsmopn

Description: The metric on the extended reals generates a topology, but this does not match the order topology on RR* ; for example { +oo } is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses xrsxmet.1 ⊒D=dist⁑ℝ𝑠*
xrsmopn.1 ⊒J=MetOpen⁑D
Assertion xrsmopn ⊒ordTopβ‘β‰€βŠ†J

Proof

Step Hyp Ref Expression
1 xrsxmet.1 ⊒D=dist⁑ℝ𝑠*
2 xrsmopn.1 ⊒J=MetOpen⁑D
3 elssuni ⊒x∈ordTop⁑≀→xβŠ†β‹ƒordTop⁑≀
4 letopuni βŠ’β„*=⋃ordTop⁑≀
5 3 4 sseqtrrdi ⊒x∈ordTop⁑≀→xβŠ†β„*
6 eqid ⊒absβˆ˜βˆ’β†Ύβ„2=absβˆ˜βˆ’β†Ύβ„2
7 6 rexmet ⊒absβˆ˜βˆ’β†Ύβ„2∈∞Met⁑ℝ
8 letop ⊒ordTopβ‘β‰€βˆˆTop
9 reex βŠ’β„βˆˆV
10 elrestr ⊒ordTopβ‘β‰€βˆˆTopβˆ§β„βˆˆV∧x∈ordTop⁑≀→xβˆ©β„βˆˆordTop⁑≀↾𝑑ℝ
11 8 9 10 mp3an12 ⊒x∈ordTop⁑≀→xβˆ©β„βˆˆordTop⁑≀↾𝑑ℝ
12 11 ad2antrr ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„β†’xβˆ©β„βˆˆordTop⁑≀↾𝑑ℝ
13 elin ⊒y∈xβˆ©β„β†”y∈x∧yβˆˆβ„
14 13 biimpri ⊒y∈x∧yβˆˆβ„β†’y∈xβˆ©β„
15 14 adantll ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„β†’y∈xβˆ©β„
16 eqid ⊒ordTop⁑≀↾𝑑ℝ=ordTop⁑≀↾𝑑ℝ
17 16 xrtgioo ⊒topGen⁑ran⁑.=ordTop⁑≀↾𝑑ℝ
18 eqid ⊒MetOpen⁑absβˆ˜βˆ’β†Ύβ„2=MetOpen⁑absβˆ˜βˆ’β†Ύβ„2
19 6 18 tgioo ⊒topGen⁑ran⁑.=MetOpen⁑absβˆ˜βˆ’β†Ύβ„2
20 17 19 eqtr3i ⊒ordTop⁑≀↾𝑑ℝ=MetOpen⁑absβˆ˜βˆ’β†Ύβ„2
21 20 mopni2 ⊒absβˆ˜βˆ’β†Ύβ„2∈∞Metβ‘β„βˆ§xβˆ©β„βˆˆordTopβ‘β‰€β†Ύπ‘‘β„βˆ§y∈xβˆ©β„β†’βˆƒrβˆˆβ„+yball⁑absβˆ˜βˆ’β†Ύβ„2rβŠ†xβˆ©β„
22 7 12 15 21 mp3an2i ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„β†’βˆƒrβˆˆβ„+yball⁑absβˆ˜βˆ’β†Ύβ„2rβŠ†xβˆ©β„
23 1 xrsxmet ⊒D∈∞Met⁑ℝ*
24 simplr ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’yβˆˆβ„
25 ressxr βŠ’β„βŠ†β„*
26 sseqin2 βŠ’β„βŠ†β„*↔ℝ*βˆ©β„=ℝ
27 25 26 mpbi βŠ’β„*βˆ©β„=ℝ
28 24 27 eleqtrrdi ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’yβˆˆβ„*βˆ©β„
29 rpxr ⊒rβˆˆβ„+β†’rβˆˆβ„*
30 29 adantl ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’rβˆˆβ„*
31 1 xrsdsre ⊒D↾ℝ2=absβˆ˜βˆ’β†Ύβ„2
32 31 eqcomi ⊒absβˆ˜βˆ’β†Ύβ„2=D↾ℝ2
33 32 blres ⊒D∈∞Met⁑ℝ*∧yβˆˆβ„*βˆ©β„βˆ§rβˆˆβ„*β†’yball⁑absβˆ˜βˆ’β†Ύβ„2r=yball⁑Drβˆ©β„
34 23 28 30 33 mp3an2i ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’yball⁑absβˆ˜βˆ’β†Ύβ„2r=yball⁑Drβˆ©β„
35 1 xrsblre ⊒yβˆˆβ„βˆ§rβˆˆβ„*β†’yball⁑DrβŠ†β„
36 29 35 sylan2 ⊒yβˆˆβ„βˆ§rβˆˆβ„+β†’yball⁑DrβŠ†β„
37 36 adantll ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’yball⁑DrβŠ†β„
38 df-ss ⊒yball⁑DrβŠ†β„β†”yball⁑Drβˆ©β„=yball⁑Dr
39 37 38 sylib ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’yball⁑Drβˆ©β„=yball⁑Dr
40 34 39 eqtrd ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’yball⁑absβˆ˜βˆ’β†Ύβ„2r=yball⁑Dr
41 40 sseq1d ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’yball⁑absβˆ˜βˆ’β†Ύβ„2rβŠ†xβˆ©β„β†”yball⁑DrβŠ†xβˆ©β„
42 inss1 ⊒xβˆ©β„βŠ†x
43 sstr ⊒yball⁑DrβŠ†xβˆ©β„βˆ§xβˆ©β„βŠ†xβ†’yball⁑DrβŠ†x
44 42 43 mpan2 ⊒yball⁑DrβŠ†xβˆ©β„β†’yball⁑DrβŠ†x
45 41 44 syl6bi ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„βˆ§rβˆˆβ„+β†’yball⁑absβˆ˜βˆ’β†Ύβ„2rβŠ†xβˆ©β„β†’yball⁑DrβŠ†x
46 45 reximdva ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„β†’βˆƒrβˆˆβ„+yball⁑absβˆ˜βˆ’β†Ύβ„2rβŠ†xβˆ©β„β†’βˆƒrβˆˆβ„+yball⁑DrβŠ†x
47 22 46 mpd ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧yβˆˆβ„β†’βˆƒrβˆˆβ„+yball⁑DrβŠ†x
48 1rp ⊒1βˆˆβ„+
49 5 sselda ⊒x∈ordTopβ‘β‰€βˆ§y∈xβ†’yβˆˆβ„*
50 49 adantr ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„β†’yβˆˆβ„*
51 rpxr ⊒1βˆˆβ„+β†’1βˆˆβ„*
52 48 51 mp1i ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„β†’1βˆˆβ„*
53 elbl ⊒D∈∞Met⁑ℝ*∧yβˆˆβ„*∧1βˆˆβ„*β†’z∈yball⁑D1↔zβˆˆβ„*∧yDz<1
54 23 50 52 53 mp3an2i ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„β†’z∈yball⁑D1↔zβˆˆβ„*∧yDz<1
55 simp2 ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1β†’Β¬yβˆˆβ„
56 49 3ad2ant1 ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1β†’yβˆˆβ„*
57 56 adantr ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yβˆˆβ„*
58 simpl3l ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’zβˆˆβ„*
59 xmetcl ⊒D∈∞Met⁑ℝ*∧yβˆˆβ„*∧zβˆˆβ„*β†’yDzβˆˆβ„*
60 23 57 58 59 mp3an2i ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yDzβˆˆβ„*
61 1red ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’1βˆˆβ„
62 xmetge0 ⊒D∈∞Met⁑ℝ*∧yβˆˆβ„*∧zβˆˆβ„*β†’0≀yDz
63 23 57 58 62 mp3an2i ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’0≀yDz
64 simpl3r ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yDz<1
65 1xr ⊒1βˆˆβ„*
66 xrltle ⊒yDzβˆˆβ„*∧1βˆˆβ„*β†’yDz<1β†’yDz≀1
67 60 65 66 sylancl ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yDz<1β†’yDz≀1
68 64 67 mpd ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yDz≀1
69 xrrege0 ⊒yDzβˆˆβ„*∧1βˆˆβ„βˆ§0≀yDz∧yDz≀1β†’yDzβˆˆβ„
70 60 61 63 68 69 syl22anc ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yDzβˆˆβ„
71 simpr ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yβ‰ z
72 1 xrsdsreclb ⊒yβˆˆβ„*∧zβˆˆβ„*∧yβ‰ zβ†’yDzβˆˆβ„β†”yβˆˆβ„βˆ§zβˆˆβ„
73 57 58 71 72 syl3anc ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yDzβˆˆβ„β†”yβˆˆβ„βˆ§zβˆˆβ„
74 70 73 mpbid ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yβˆˆβ„βˆ§zβˆˆβ„
75 74 simpld ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1∧yβ‰ zβ†’yβˆˆβ„
76 75 ex ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1β†’yβ‰ zβ†’yβˆˆβ„
77 76 necon1bd ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1β†’Β¬yβˆˆβ„β†’y=z
78 simp1r ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1β†’y∈x
79 elequ1 ⊒y=zβ†’y∈x↔z∈x
80 78 79 syl5ibcom ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1β†’y=zβ†’z∈x
81 77 80 syld ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1β†’Β¬yβˆˆβ„β†’z∈x
82 55 81 mpd ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„βˆ§zβˆˆβ„*∧yDz<1β†’z∈x
83 82 3expia ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„β†’zβˆˆβ„*∧yDz<1β†’z∈x
84 54 83 sylbid ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„β†’z∈yball⁑D1β†’z∈x
85 84 ssrdv ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„β†’yball⁑D1βŠ†x
86 oveq2 ⊒r=1β†’yball⁑Dr=yball⁑D1
87 86 sseq1d ⊒r=1β†’yball⁑DrβŠ†x↔yball⁑D1βŠ†x
88 87 rspcev ⊒1βˆˆβ„+∧yball⁑D1βŠ†xβ†’βˆƒrβˆˆβ„+yball⁑DrβŠ†x
89 48 85 88 sylancr ⊒x∈ordTopβ‘β‰€βˆ§y∈x∧¬yβˆˆβ„β†’βˆƒrβˆˆβ„+yball⁑DrβŠ†x
90 47 89 pm2.61dan ⊒x∈ordTopβ‘β‰€βˆ§y∈xβ†’βˆƒrβˆˆβ„+yball⁑DrβŠ†x
91 90 ralrimiva ⊒x∈ordTopβ‘β‰€β†’βˆ€y∈xβˆƒrβˆˆβ„+yball⁑DrβŠ†x
92 2 elmopn2 ⊒D∈∞Met⁑ℝ*β†’x∈J↔xβŠ†β„*βˆ§βˆ€y∈xβˆƒrβˆˆβ„+yball⁑DrβŠ†x
93 23 92 ax-mp ⊒x∈J↔xβŠ†β„*βˆ§βˆ€y∈xβˆƒrβˆˆβ„+yball⁑DrβŠ†x
94 5 91 93 sylanbrc ⊒x∈ordTop⁑≀→x∈J
95 94 ssriv ⊒ordTopβ‘β‰€βŠ†J