Metamath Proof Explorer


Theorem metrtri

Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014)

Ref Expression
Assertion metrtri ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) )

Proof

Step Hyp Ref Expression
1 metcl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐶𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ ℝ )
2 1 3adant3r2 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ∈ ℝ )
3 metcl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐵𝑋𝐶𝑋 ) → ( 𝐵 𝐷 𝐶 ) ∈ ℝ )
4 3 3adant3r1 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) ∈ ℝ )
5 eqid ( dist ‘ ℝ*𝑠 ) = ( dist ‘ ℝ*𝑠 )
6 5 xrsdsreval ( ( ( 𝐴 𝐷 𝐶 ) ∈ ℝ ∧ ( 𝐵 𝐷 𝐶 ) ∈ ℝ ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) = ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) )
7 2 4 6 syl2anc ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) = ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) )
8 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
9 5 xmetrtri2 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) )
10 8 9 sylan ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) )
11 7 10 eqbrtrrd ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) )