Metamath Proof Explorer


Theorem mndtchom

Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
mndtchom.x ( 𝜑𝑋𝐵 )
mndtchom.y ( 𝜑𝑌𝐵 )
mndtchom.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
Assertion mndtchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( Base ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
2 mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
3 mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
4 mndtchom.x ( 𝜑𝑋𝐵 )
5 mndtchom.y ( 𝜑𝑌𝐵 )
6 mndtchom.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
7 1 2 mndtcval ( 𝜑𝐶 = { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ } )
8 catstr { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ } Struct ⟨ 1 , 1 5 ⟩
9 homid Hom = Slot ( Hom ‘ ndx )
10 snsstp2 { ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ }
11 snex { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ∈ V
12 11 a1i ( 𝜑 → { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ∈ V )
13 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
14 7 8 9 10 12 13 strfv3 ( 𝜑 → ( Hom ‘ 𝐶 ) = { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } )
15 6 14 eqtrd ( 𝜑𝐻 = { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } )
16 1 2 3 4 mndtcob ( 𝜑𝑋 = 𝑀 )
17 1 2 3 5 mndtcob ( 𝜑𝑌 = 𝑀 )
18 15 16 17 oveq123d ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑀 { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } 𝑀 ) )
19 df-ot 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ = ⟨ ⟨ 𝑀 , 𝑀 ⟩ , ( Base ‘ 𝑀 ) ⟩
20 19 sneqi { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } = { ⟨ ⟨ 𝑀 , 𝑀 ⟩ , ( Base ‘ 𝑀 ) ⟩ }
21 20 oveqi ( 𝑀 { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } 𝑀 ) = ( 𝑀 { ⟨ ⟨ 𝑀 , 𝑀 ⟩ , ( Base ‘ 𝑀 ) ⟩ } 𝑀 )
22 df-ov ( 𝑀 { ⟨ ⟨ 𝑀 , 𝑀 ⟩ , ( Base ‘ 𝑀 ) ⟩ } 𝑀 ) = ( { ⟨ ⟨ 𝑀 , 𝑀 ⟩ , ( Base ‘ 𝑀 ) ⟩ } ‘ ⟨ 𝑀 , 𝑀 ⟩ )
23 opex 𝑀 , 𝑀 ⟩ ∈ V
24 fvex ( Base ‘ 𝑀 ) ∈ V
25 23 24 fvsn ( { ⟨ ⟨ 𝑀 , 𝑀 ⟩ , ( Base ‘ 𝑀 ) ⟩ } ‘ ⟨ 𝑀 , 𝑀 ⟩ ) = ( Base ‘ 𝑀 )
26 21 22 25 3eqtri ( 𝑀 { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } 𝑀 ) = ( Base ‘ 𝑀 )
27 18 26 eqtrdi ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( Base ‘ 𝑀 ) )