| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modle.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
modle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
modle.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
modle.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
| 6 |
|
simplr3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → 𝑍 ∈ 𝐵 ) |
| 7 |
|
simplr2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → 𝑌 ∈ 𝐵 ) |
| 8 |
|
simplr1 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
| 9 |
6 7 8
|
3jca |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 10 |
5 9
|
jca |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝐾 ∈ Lat ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → 𝑍 ≤ 𝑋 ) |
| 12 |
1 2 3 4
|
mod1ile |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑍 ≤ 𝑋 → ( 𝑍 ∨ ( 𝑌 ∧ 𝑋 ) ) ≤ ( ( 𝑍 ∨ 𝑌 ) ∧ 𝑋 ) ) ) |
| 13 |
10 11 12
|
sylc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑍 ∨ ( 𝑌 ∧ 𝑋 ) ) ≤ ( ( 𝑍 ∨ 𝑌 ) ∧ 𝑋 ) ) |
| 14 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
| 15 |
5 8 7 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑍 ) = ( ( 𝑌 ∧ 𝑋 ) ∨ 𝑍 ) ) |
| 17 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑋 ) ∈ 𝐵 ) |
| 18 |
5 7 8 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑌 ∧ 𝑋 ) ∈ 𝐵 ) |
| 19 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∧ 𝑋 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑌 ∧ 𝑋 ) ∨ 𝑍 ) = ( 𝑍 ∨ ( 𝑌 ∧ 𝑋 ) ) ) |
| 20 |
5 18 6 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( ( 𝑌 ∧ 𝑋 ) ∨ 𝑍 ) = ( 𝑍 ∨ ( 𝑌 ∧ 𝑋 ) ) ) |
| 21 |
16 20
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑍 ) = ( 𝑍 ∨ ( 𝑌 ∧ 𝑋 ) ) ) |
| 22 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑌 ) ) |
| 23 |
5 7 6 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑌 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑌 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) = ( 𝑋 ∧ ( 𝑍 ∨ 𝑌 ) ) ) |
| 25 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 ∨ 𝑌 ) ∈ 𝐵 ) |
| 26 |
5 6 7 25
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑍 ∨ 𝑌 ) ∈ 𝐵 ) |
| 27 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑍 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑍 ∨ 𝑌 ) ) = ( ( 𝑍 ∨ 𝑌 ) ∧ 𝑋 ) ) |
| 28 |
5 8 26 27
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑍 ∨ 𝑌 ) ) = ( ( 𝑍 ∨ 𝑌 ) ∧ 𝑋 ) ) |
| 29 |
24 28
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) = ( ( 𝑍 ∨ 𝑌 ) ∧ 𝑋 ) ) |
| 30 |
13 21 29
|
3brtr4d |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑍 ≤ 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑍 ) ≤ ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) ) |
| 31 |
30
|
ex |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 ≤ 𝑋 → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑍 ) ≤ ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) ) ) |