Metamath Proof Explorer


Theorem mod2ile

Description: The weak direction of the modular law (e.g., pmod2iN ) that holds in any lattice. (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses modle.b 𝐵 = ( Base ‘ 𝐾 )
modle.l = ( le ‘ 𝐾 )
modle.j = ( join ‘ 𝐾 )
modle.m = ( meet ‘ 𝐾 )
Assertion mod2ile ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 𝑋 → ( ( 𝑋 𝑌 ) 𝑍 ) ( 𝑋 ( 𝑌 𝑍 ) ) ) )

Proof

Step Hyp Ref Expression
1 modle.b 𝐵 = ( Base ‘ 𝐾 )
2 modle.l = ( le ‘ 𝐾 )
3 modle.j = ( join ‘ 𝐾 )
4 modle.m = ( meet ‘ 𝐾 )
5 simpll ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → 𝐾 ∈ Lat )
6 simplr3 ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → 𝑍𝐵 )
7 simplr2 ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → 𝑌𝐵 )
8 simplr1 ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → 𝑋𝐵 )
9 6 7 8 3jca ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑍𝐵𝑌𝐵𝑋𝐵 ) )
10 5 9 jca ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝐾 ∈ Lat ∧ ( 𝑍𝐵𝑌𝐵𝑋𝐵 ) ) )
11 simpr ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → 𝑍 𝑋 )
12 1 2 3 4 mod1ile ( ( 𝐾 ∈ Lat ∧ ( 𝑍𝐵𝑌𝐵𝑋𝐵 ) ) → ( 𝑍 𝑋 → ( 𝑍 ( 𝑌 𝑋 ) ) ( ( 𝑍 𝑌 ) 𝑋 ) ) )
13 10 11 12 sylc ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑍 ( 𝑌 𝑋 ) ) ( ( 𝑍 𝑌 ) 𝑋 ) )
14 1 4 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
15 5 8 7 14 syl3anc ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
16 15 oveq1d ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑌 𝑋 ) 𝑍 ) )
17 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵 ) → ( 𝑌 𝑋 ) ∈ 𝐵 )
18 5 7 8 17 syl3anc ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑌 𝑋 ) ∈ 𝐵 )
19 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ ( 𝑌 𝑋 ) ∈ 𝐵𝑍𝐵 ) → ( ( 𝑌 𝑋 ) 𝑍 ) = ( 𝑍 ( 𝑌 𝑋 ) ) )
20 5 18 6 19 syl3anc ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( ( 𝑌 𝑋 ) 𝑍 ) = ( 𝑍 ( 𝑌 𝑋 ) ) )
21 16 20 eqtrd ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑍 ( 𝑌 𝑋 ) ) )
22 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) = ( 𝑍 𝑌 ) )
23 5 7 6 22 syl3anc ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑌 𝑍 ) = ( 𝑍 𝑌 ) )
24 23 oveq2d ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑋 ( 𝑍 𝑌 ) ) )
25 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵 ) → ( 𝑍 𝑌 ) ∈ 𝐵 )
26 5 6 7 25 syl3anc ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑍 𝑌 ) ∈ 𝐵 )
27 1 4 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑍 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( 𝑍 𝑌 ) ) = ( ( 𝑍 𝑌 ) 𝑋 ) )
28 5 8 26 27 syl3anc ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑋 ( 𝑍 𝑌 ) ) = ( ( 𝑍 𝑌 ) 𝑋 ) )
29 24 28 eqtrd ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( ( 𝑍 𝑌 ) 𝑋 ) )
30 13 21 29 3brtr4d ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑍 𝑋 ) → ( ( 𝑋 𝑌 ) 𝑍 ) ( 𝑋 ( 𝑌 𝑍 ) ) )
31 30 ex ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 𝑋 → ( ( 𝑋 𝑌 ) 𝑍 ) ( 𝑋 ( 𝑌 𝑍 ) ) ) )