| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 2 |
|
nnrp |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) |
| 3 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) |
| 4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) |
| 5 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → 0 ≤ 𝐴 ) |
| 7 |
6
|
anim1i |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ 𝐴 < 𝐵 ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝐴 < 𝐵 ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) |
| 9 |
|
modid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) |
| 10 |
4 8 9
|
syl2an2 |
⊢ ( ( 𝐴 < 𝐵 ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) |
| 11 |
|
iftrue |
⊢ ( 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) = 𝐴 ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝐴 < 𝐵 → 𝐴 = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 < 𝐵 ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → 𝐴 = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 14 |
10 13
|
eqtrd |
⊢ ( ( 𝐴 < 𝐵 ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 15 |
14
|
ex |
⊢ ( 𝐴 < 𝐵 → ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) ) |
| 16 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) |
| 17 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 18 |
|
lenlt |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 19 |
17 1 18
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 20 |
19
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 21 |
20
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐴 ) |
| 22 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐴 < ( 2 · 𝐵 ) ) |
| 23 |
|
2submod |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 24 |
16 21 22 23
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 25 |
|
iffalse |
⊢ ( ¬ 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 27 |
26
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 − 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 28 |
24 27
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 29 |
28
|
expcom |
⊢ ( ¬ 𝐴 < 𝐵 → ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) ) |
| 30 |
15 29
|
pm2.61i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |