| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
modaddmod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) |
| 3 |
1 2
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) |
| 4 |
3
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) ) |
| 6 |
|
oveq1 |
⊢ ( ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) → ( ( 𝐴 mod 𝑀 ) + 1 ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( ( 𝑀 − 1 ) + 1 ) mod 𝑀 ) ) |
| 8 |
|
rpcn |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) |
| 9 |
|
npcan1 |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑀 ∈ ℝ+ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝑀 ∈ ℝ+ → ( ( ( 𝑀 − 1 ) + 1 ) mod 𝑀 ) = ( 𝑀 mod 𝑀 ) ) |
| 12 |
|
modid0 |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 mod 𝑀 ) = 0 ) |
| 13 |
11 12
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ+ → ( ( ( 𝑀 − 1 ) + 1 ) mod 𝑀 ) = 0 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝑀 − 1 ) + 1 ) mod 𝑀 ) = 0 ) |
| 15 |
7 14
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = 0 ) |
| 16 |
5 15
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 0 ) |
| 17 |
16
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 0 ) ) |