Metamath Proof Explorer


Theorem mptscmfsuppd

Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019) (Proof shortened by AV, 18-Oct-2019)

Ref Expression
Hypotheses mptscmfsuppd.b 𝐵 = ( Base ‘ 𝑃 )
mptscmfsuppd.s 𝑆 = ( Scalar ‘ 𝑃 )
mptscmfsuppd.n · = ( ·𝑠𝑃 )
mptscmfsuppd.p ( 𝜑𝑃 ∈ LMod )
mptscmfsuppd.x ( 𝜑𝑋𝑉 )
mptscmfsuppd.z ( ( 𝜑𝑘𝑋 ) → 𝑍𝐵 )
mptscmfsuppd.a ( 𝜑𝐴 : 𝑋𝑌 )
mptscmfsuppd.f ( 𝜑𝐴 finSupp ( 0g𝑆 ) )
Assertion mptscmfsuppd ( 𝜑 → ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) · 𝑍 ) ) finSupp ( 0g𝑃 ) )

Proof

Step Hyp Ref Expression
1 mptscmfsuppd.b 𝐵 = ( Base ‘ 𝑃 )
2 mptscmfsuppd.s 𝑆 = ( Scalar ‘ 𝑃 )
3 mptscmfsuppd.n · = ( ·𝑠𝑃 )
4 mptscmfsuppd.p ( 𝜑𝑃 ∈ LMod )
5 mptscmfsuppd.x ( 𝜑𝑋𝑉 )
6 mptscmfsuppd.z ( ( 𝜑𝑘𝑋 ) → 𝑍𝐵 )
7 mptscmfsuppd.a ( 𝜑𝐴 : 𝑋𝑌 )
8 mptscmfsuppd.f ( 𝜑𝐴 finSupp ( 0g𝑆 ) )
9 2 a1i ( 𝜑𝑆 = ( Scalar ‘ 𝑃 ) )
10 fvexd ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ V )
11 eqid ( 0g𝑃 ) = ( 0g𝑃 )
12 eqid ( 0g𝑆 ) = ( 0g𝑆 )
13 7 feqmptd ( 𝜑𝐴 = ( 𝑘𝑋 ↦ ( 𝐴𝑘 ) ) )
14 13 8 eqbrtrrd ( 𝜑 → ( 𝑘𝑋 ↦ ( 𝐴𝑘 ) ) finSupp ( 0g𝑆 ) )
15 5 4 9 1 10 6 11 12 3 14 mptscmfsupp0 ( 𝜑 → ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) · 𝑍 ) ) finSupp ( 0g𝑃 ) )