| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptscmfsuppd.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 2 |
|
mptscmfsuppd.s |
⊢ 𝑆 = ( Scalar ‘ 𝑃 ) |
| 3 |
|
mptscmfsuppd.n |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 4 |
|
mptscmfsuppd.p |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 5 |
|
mptscmfsuppd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
mptscmfsuppd.z |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑍 ∈ 𝐵 ) |
| 7 |
|
mptscmfsuppd.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ 𝑌 ) |
| 8 |
|
mptscmfsuppd.f |
⊢ ( 𝜑 → 𝐴 finSupp ( 0g ‘ 𝑆 ) ) |
| 9 |
2
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
| 10 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ V ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 13 |
7
|
feqmptd |
⊢ ( 𝜑 → 𝐴 = ( 𝑘 ∈ 𝑋 ↦ ( 𝐴 ‘ 𝑘 ) ) ) |
| 14 |
13 8
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( 𝐴 ‘ 𝑘 ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 15 |
5 4 9 1 10 6 11 12 3 14
|
mptscmfsupp0 |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) · 𝑍 ) ) finSupp ( 0g ‘ 𝑃 ) ) |