| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrcfval.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
| 2 |
1
|
mrcid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) = 𝑈 ) |
| 3 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) → ( 𝐹 ‘ 𝑈 ) = 𝑈 ) |
| 4 |
1
|
mrcssv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ⊆ 𝑋 ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) → ( 𝐹 ‘ 𝑈 ) ⊆ 𝑋 ) |
| 6 |
3 5
|
eqsstrrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) → 𝑈 ⊆ 𝑋 ) |
| 7 |
1
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝐶 ) |
| 8 |
6 7
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝐶 ) |
| 9 |
3 8
|
eqeltrrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) → 𝑈 ∈ 𝐶 ) |
| 10 |
2 9
|
impbida |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) ) |