| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrcfval.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
| 2 |
1
|
mrcidb |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝑈 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) ) |
| 4 |
|
eqss |
⊢ ( ( 𝐹 ‘ 𝑈 ) = 𝑈 ↔ ( ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ∧ 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) ) |
| 5 |
1
|
mrcssid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) |
| 6 |
5
|
biantrud |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ↔ ( ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ∧ 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) ) ) |
| 7 |
4 6
|
bitr4id |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( ( 𝐹 ‘ 𝑈 ) = 𝑈 ↔ ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ) ) |
| 8 |
3 7
|
bitrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝑈 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ) ) |