| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrcfval.f |
|- F = ( mrCls ` C ) |
| 2 |
1
|
mrcidb |
|- ( C e. ( Moore ` X ) -> ( U e. C <-> ( F ` U ) = U ) ) |
| 3 |
2
|
adantr |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( U e. C <-> ( F ` U ) = U ) ) |
| 4 |
|
eqss |
|- ( ( F ` U ) = U <-> ( ( F ` U ) C_ U /\ U C_ ( F ` U ) ) ) |
| 5 |
1
|
mrcssid |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( F ` U ) ) |
| 6 |
5
|
biantrud |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( ( F ` U ) C_ U <-> ( ( F ` U ) C_ U /\ U C_ ( F ` U ) ) ) ) |
| 7 |
4 6
|
bitr4id |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( ( F ` U ) = U <-> ( F ` U ) C_ U ) ) |
| 8 |
3 7
|
bitrd |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( U e. C <-> ( F ` U ) C_ U ) ) |