| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexd.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
mreexd.2 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 3 |
|
mreexd.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 4 |
|
mreexd.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 5 |
|
mreexd.5 |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑌 } ) ) ) |
| 6 |
|
mreexd.6 |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 7 |
1 3
|
sselpwd |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝑋 ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 = 𝑆 ) → 𝑌 ∈ 𝑋 ) |
| 9 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑌 } ) ) ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑠 = 𝑆 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
| 12 |
11
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → { 𝑦 } = { 𝑌 } ) |
| 13 |
10 12
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ( 𝑠 ∪ { 𝑦 } ) = ( 𝑆 ∪ { 𝑌 } ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) = ( 𝑁 ‘ ( 𝑆 ∪ { 𝑌 } ) ) ) |
| 15 |
9 14
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ) |
| 16 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ¬ 𝑍 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 17 |
10
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ( 𝑁 ‘ 𝑠 ) = ( 𝑁 ‘ 𝑆 ) ) |
| 18 |
16 17
|
neleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ¬ 𝑍 ∈ ( 𝑁 ‘ 𝑠 ) ) |
| 19 |
15 18
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) |
| 20 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑦 = 𝑌 ) |
| 21 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑠 = 𝑆 ) |
| 22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑧 = 𝑍 ) |
| 23 |
22
|
sneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → { 𝑧 } = { 𝑍 } ) |
| 24 |
21 23
|
uneq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑠 ∪ { 𝑧 } ) = ( 𝑆 ∪ { 𝑍 } ) ) |
| 25 |
24
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) |
| 26 |
20 25
|
eleq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ↔ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) ) |
| 27 |
19 26
|
rspcdv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) ) |
| 28 |
8 27
|
rspcimdv |
⊢ ( ( 𝜑 ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) ) |
| 29 |
7 28
|
rspcimdv |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) ) |
| 30 |
2 29
|
mpd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) |