| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexmrid.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 2 |
|
mreexmrid.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
| 3 |
|
mreexmrid.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
| 4 |
|
mreexmrid.4 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 5 |
|
mreexmrid.5 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
| 6 |
|
mreexmrid.6 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 7 |
|
mreexmrid.7 |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 8 |
3 1 5
|
mrissd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 9 |
6
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑋 ) |
| 10 |
8 9
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 𝑌 } ) ⊆ 𝑋 ) |
| 11 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 12 |
11
|
elfvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑋 ∈ V ) |
| 13 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 14 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑆 ∈ 𝐼 ) |
| 15 |
3 11 14
|
mrissd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑆 ⊆ 𝑋 ) |
| 16 |
15
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
| 17 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑌 ∈ 𝑋 ) |
| 18 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 19 |
|
difundir |
⊢ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = ( ( 𝑆 ∖ { 𝑥 } ) ∪ ( { 𝑌 } ∖ { 𝑥 } ) ) |
| 20 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑥 ∈ 𝑆 ) |
| 21 |
1 2 8
|
mrcssidd |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 22 |
21 7
|
ssneldd |
⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝑆 ) |
| 23 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑌 ∈ 𝑆 ) |
| 24 |
|
nelneq |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ ¬ 𝑌 ∈ 𝑆 ) → ¬ 𝑥 = 𝑌 ) |
| 25 |
20 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑥 = 𝑌 ) |
| 26 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝑌 } → 𝑥 = 𝑌 ) |
| 27 |
25 26
|
nsyl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑥 ∈ { 𝑌 } ) |
| 28 |
|
difsnb |
⊢ ( ¬ 𝑥 ∈ { 𝑌 } ↔ ( { 𝑌 } ∖ { 𝑥 } ) = { 𝑌 } ) |
| 29 |
27 28
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( { 𝑌 } ∖ { 𝑥 } ) = { 𝑌 } ) |
| 30 |
29
|
uneq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ∖ { 𝑥 } ) ∪ ( { 𝑌 } ∖ { 𝑥 } ) ) = ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑌 } ) ) |
| 31 |
19 30
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑌 } ) ) |
| 32 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑌 } ) ) ) |
| 33 |
18 32
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑌 } ) ) ) |
| 34 |
2 3 11 14 20
|
ismri2dad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 35 |
12 13 16 17 33 34
|
mreexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) |
| 36 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 37 |
|
undif1 |
⊢ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝑆 ∪ { 𝑥 } ) |
| 38 |
20
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → { 𝑥 } ⊆ 𝑆 ) |
| 39 |
|
ssequn2 |
⊢ ( { 𝑥 } ⊆ 𝑆 ↔ ( 𝑆 ∪ { 𝑥 } ) = 𝑆 ) |
| 40 |
38 39
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( 𝑆 ∪ { 𝑥 } ) = 𝑆 ) |
| 41 |
37 40
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝑆 ) |
| 42 |
41
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
| 43 |
36 42
|
neleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑌 ∈ ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) |
| 44 |
35 43
|
pm2.65i |
⊢ ¬ ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 45 |
|
df-3an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) ) |
| 46 |
44 45
|
mtbi |
⊢ ¬ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 47 |
46
|
imnani |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 48 |
47
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ 𝑆 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 49 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → 𝑥 = 𝑌 ) |
| 50 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ¬ 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 51 |
49 50
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 52 |
49
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → { 𝑥 } = { 𝑌 } ) |
| 53 |
52
|
difeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑌 } ) ) |
| 54 |
|
difun2 |
⊢ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑌 } ) = ( 𝑆 ∖ { 𝑌 } ) |
| 55 |
53 54
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑌 } ) ) |
| 56 |
|
difsnb |
⊢ ( ¬ 𝑌 ∈ 𝑆 ↔ ( 𝑆 ∖ { 𝑌 } ) = 𝑆 ) |
| 57 |
22 56
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑌 } ) = 𝑆 ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( 𝑆 ∖ { 𝑌 } ) = 𝑆 ) |
| 59 |
55 58
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = 𝑆 ) |
| 60 |
59
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
| 61 |
51 60
|
neleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 62 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) → 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) |
| 63 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ↔ ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ { 𝑌 } ) ) |
| 64 |
62 63
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) → ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ { 𝑌 } ) ) |
| 65 |
48 61 64
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 66 |
65
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 67 |
2 3 1 10 66
|
ismri2dd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 𝑌 } ) ∈ 𝐼 ) |