| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexmrid.1 |
|
| 2 |
|
mreexmrid.2 |
|
| 3 |
|
mreexmrid.3 |
|
| 4 |
|
mreexmrid.4 |
|
| 5 |
|
mreexmrid.5 |
|
| 6 |
|
mreexmrid.6 |
|
| 7 |
|
mreexmrid.7 |
|
| 8 |
3 1 5
|
mrissd |
|
| 9 |
6
|
snssd |
|
| 10 |
8 9
|
unssd |
|
| 11 |
1
|
3ad2ant1 |
|
| 12 |
11
|
elfvexd |
|
| 13 |
4
|
3ad2ant1 |
|
| 14 |
5
|
3ad2ant1 |
|
| 15 |
3 11 14
|
mrissd |
|
| 16 |
15
|
ssdifssd |
|
| 17 |
6
|
3ad2ant1 |
|
| 18 |
|
simp3 |
|
| 19 |
|
difundir |
|
| 20 |
|
simp2 |
|
| 21 |
1 2 8
|
mrcssidd |
|
| 22 |
21 7
|
ssneldd |
|
| 23 |
22
|
3ad2ant1 |
|
| 24 |
|
nelneq |
|
| 25 |
20 23 24
|
syl2anc |
|
| 26 |
|
elsni |
|
| 27 |
25 26
|
nsyl |
|
| 28 |
|
difsnb |
|
| 29 |
27 28
|
sylib |
|
| 30 |
29
|
uneq2d |
|
| 31 |
19 30
|
eqtrid |
|
| 32 |
31
|
fveq2d |
|
| 33 |
18 32
|
eleqtrd |
|
| 34 |
2 3 11 14 20
|
ismri2dad |
|
| 35 |
12 13 16 17 33 34
|
mreexd |
|
| 36 |
7
|
3ad2ant1 |
|
| 37 |
|
undif1 |
|
| 38 |
20
|
snssd |
|
| 39 |
|
ssequn2 |
|
| 40 |
38 39
|
sylib |
|
| 41 |
37 40
|
eqtrid |
|
| 42 |
41
|
fveq2d |
|
| 43 |
36 42
|
neleqtrrd |
|
| 44 |
35 43
|
pm2.65i |
|
| 45 |
|
df-3an |
|
| 46 |
44 45
|
mtbi |
|
| 47 |
46
|
imnani |
|
| 48 |
47
|
adantlr |
|
| 49 |
26
|
adantl |
|
| 50 |
7
|
ad2antrr |
|
| 51 |
49 50
|
eqneltrd |
|
| 52 |
49
|
sneqd |
|
| 53 |
52
|
difeq2d |
|
| 54 |
|
difun2 |
|
| 55 |
53 54
|
eqtrdi |
|
| 56 |
|
difsnb |
|
| 57 |
22 56
|
sylib |
|
| 58 |
57
|
ad2antrr |
|
| 59 |
55 58
|
eqtrd |
|
| 60 |
59
|
fveq2d |
|
| 61 |
51 60
|
neleqtrrd |
|
| 62 |
|
simpr |
|
| 63 |
|
elun |
|
| 64 |
62 63
|
sylib |
|
| 65 |
48 61 64
|
mpjaodan |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
2 3 1 10 66
|
ismri2dd |
|