Metamath Proof Explorer


Theorem mreexd

Description: In a Moore system, the closure operator is said to have theexchange property if, for all elements y and z of the base set and subsets S of the base set such that z is in the closure of ( S u. { y } ) but not in the closure of S , y is in the closure of ( S u. { z } ) (Definition 3.1.9 in FaureFrolicher p. 57 to 58.) This theorem allows to construct substitution instances of this definition. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexd.1 φXV
mreexd.2 φs𝒫XyXzNsyNsyNsz
mreexd.3 φSX
mreexd.4 φYX
mreexd.5 φZNSY
mreexd.6 φ¬ZNS
Assertion mreexd φYNSZ

Proof

Step Hyp Ref Expression
1 mreexd.1 φXV
2 mreexd.2 φs𝒫XyXzNsyNsyNsz
3 mreexd.3 φSX
4 mreexd.4 φYX
5 mreexd.5 φZNSY
6 mreexd.6 φ¬ZNS
7 1 3 sselpwd φS𝒫X
8 4 adantr φs=SYX
9 5 ad2antrr φs=Sy=YZNSY
10 simplr φs=Sy=Ys=S
11 simpr φs=Sy=Yy=Y
12 11 sneqd φs=Sy=Yy=Y
13 10 12 uneq12d φs=Sy=Ysy=SY
14 13 fveq2d φs=Sy=YNsy=NSY
15 9 14 eleqtrrd φs=Sy=YZNsy
16 6 ad2antrr φs=Sy=Y¬ZNS
17 10 fveq2d φs=Sy=YNs=NS
18 16 17 neleqtrrd φs=Sy=Y¬ZNs
19 15 18 eldifd φs=Sy=YZNsyNs
20 simplr φs=Sy=Yz=Zy=Y
21 simpllr φs=Sy=Yz=Zs=S
22 simpr φs=Sy=Yz=Zz=Z
23 22 sneqd φs=Sy=Yz=Zz=Z
24 21 23 uneq12d φs=Sy=Yz=Zsz=SZ
25 24 fveq2d φs=Sy=Yz=ZNsz=NSZ
26 20 25 eleq12d φs=Sy=Yz=ZyNszYNSZ
27 19 26 rspcdv φs=Sy=YzNsyNsyNszYNSZ
28 8 27 rspcimdv φs=SyXzNsyNsyNszYNSZ
29 7 28 rspcimdv φs𝒫XyXzNsyNsyNszYNSZ
30 2 29 mpd φYNSZ