| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexd.1 |
|
| 2 |
|
mreexd.2 |
|
| 3 |
|
mreexd.3 |
|
| 4 |
|
mreexd.4 |
|
| 5 |
|
mreexd.5 |
|
| 6 |
|
mreexd.6 |
|
| 7 |
1 3
|
sselpwd |
|
| 8 |
4
|
adantr |
|
| 9 |
5
|
ad2antrr |
|
| 10 |
|
simplr |
|
| 11 |
|
simpr |
|
| 12 |
11
|
sneqd |
|
| 13 |
10 12
|
uneq12d |
|
| 14 |
13
|
fveq2d |
|
| 15 |
9 14
|
eleqtrrd |
|
| 16 |
6
|
ad2antrr |
|
| 17 |
10
|
fveq2d |
|
| 18 |
16 17
|
neleqtrrd |
|
| 19 |
15 18
|
eldifd |
|
| 20 |
|
simplr |
|
| 21 |
|
simpllr |
|
| 22 |
|
simpr |
|
| 23 |
22
|
sneqd |
|
| 24 |
21 23
|
uneq12d |
|
| 25 |
24
|
fveq2d |
|
| 26 |
20 25
|
eleq12d |
|
| 27 |
19 26
|
rspcdv |
|
| 28 |
8 27
|
rspcimdv |
|
| 29 |
7 28
|
rspcimdv |
|
| 30 |
2 29
|
mpd |
|