| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexexlemd.1 |
|
| 2 |
|
mreexexlemd.2 |
|
| 3 |
|
mreexexlemd.3 |
|
| 4 |
|
mreexexlemd.4 |
|
| 5 |
|
mreexexlemd.5 |
|
| 6 |
|
mreexexlemd.6 |
|
| 7 |
|
mreexexlemd.7 |
|
| 8 |
|
simplr |
|
| 9 |
8
|
breq1d |
|
| 10 |
|
simpr |
|
| 11 |
10
|
breq1d |
|
| 12 |
9 11
|
orbi12d |
|
| 13 |
|
simpll |
|
| 14 |
10 13
|
uneq12d |
|
| 15 |
14
|
fveq2d |
|
| 16 |
8 15
|
sseq12d |
|
| 17 |
8 13
|
uneq12d |
|
| 18 |
17
|
eleq1d |
|
| 19 |
12 16 18
|
3anbi123d |
|
| 20 |
|
simpllr |
|
| 21 |
|
simpr |
|
| 22 |
20 21
|
breq12d |
|
| 23 |
|
simplll |
|
| 24 |
21 23
|
uneq12d |
|
| 25 |
24
|
eleq1d |
|
| 26 |
22 25
|
anbi12d |
|
| 27 |
|
simplr |
|
| 28 |
27
|
pweqd |
|
| 29 |
26 28
|
cbvrexdva2 |
|
| 30 |
19 29
|
imbi12d |
|
| 31 |
|
simpl |
|
| 32 |
31
|
difeq2d |
|
| 33 |
32
|
pweqd |
|
| 34 |
33
|
adantr |
|
| 35 |
30 34
|
cbvraldva2 |
|
| 36 |
35 33
|
cbvraldva2 |
|
| 37 |
36
|
cbvalvw |
|
| 38 |
7 37
|
sylib |
|
| 39 |
|
ssun2 |
|
| 40 |
39
|
a1i |
|
| 41 |
5 40
|
ssexd |
|
| 42 |
1
|
difexd |
|
| 43 |
42 2
|
sselpwd |
|
| 44 |
43
|
adantr |
|
| 45 |
|
simpr |
|
| 46 |
45
|
difeq2d |
|
| 47 |
46
|
pweqd |
|
| 48 |
44 47
|
eleqtrrd |
|
| 49 |
42 3
|
sselpwd |
|
| 50 |
49
|
ad2antrr |
|
| 51 |
47
|
adantr |
|
| 52 |
50 51
|
eleqtrrd |
|
| 53 |
|
simplr |
|
| 54 |
53
|
breq1d |
|
| 55 |
|
simpr |
|
| 56 |
55
|
breq1d |
|
| 57 |
54 56
|
orbi12d |
|
| 58 |
|
simpllr |
|
| 59 |
55 58
|
uneq12d |
|
| 60 |
59
|
fveq2d |
|
| 61 |
53 60
|
sseq12d |
|
| 62 |
53 58
|
uneq12d |
|
| 63 |
62
|
eleq1d |
|
| 64 |
57 61 63
|
3anbi123d |
|
| 65 |
55
|
pweqd |
|
| 66 |
53
|
breq1d |
|
| 67 |
58
|
uneq2d |
|
| 68 |
67
|
eleq1d |
|
| 69 |
66 68
|
anbi12d |
|
| 70 |
65 69
|
rexeqbidv |
|
| 71 |
64 70
|
imbi12d |
|
| 72 |
52 71
|
rspcdv |
|
| 73 |
48 72
|
rspcimdv |
|
| 74 |
41 73
|
spcimdv |
|
| 75 |
38 74
|
mpd |
|
| 76 |
6 4 5 75
|
mp3and |
|