Metamath Proof Explorer


Theorem mreexexd

Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if F and G are disjoint from H , ( F u. H ) is independent, F is contained in the closure of ( G u. H ) , and either F or G is finite, then there is a subset q of G equinumerous to F such that ( q u. H ) is independent. This implies the case of Proposition 4.2.1 in FaureFrolicher p. 86 where either ( A \ B ) or ( B \ A ) is finite. The theorem is proven by induction using mreexexlem3d for the base case and mreexexlem4d for the induction step. (Contributed by David Moews, 1-May-2017) Remove dependencies on ax-rep and ax-ac2 . (Revised by Brendan Leahy, 2-Jun-2021)

Ref Expression
Hypotheses mreexexlem2d.1 φAMooreX
mreexexlem2d.2 N=mrClsA
mreexexlem2d.3 I=mrIndA
mreexexlem2d.4 φs𝒫XyXzNsyNsyNsz
mreexexlem2d.5 φFXH
mreexexlem2d.6 φGXH
mreexexlem2d.7 φFNGH
mreexexlem2d.8 φFHI
mreexexd.9 φFFinGFin
Assertion mreexexd φq𝒫GFqqHI

Proof

Step Hyp Ref Expression
1 mreexexlem2d.1 φAMooreX
2 mreexexlem2d.2 N=mrClsA
3 mreexexlem2d.3 I=mrIndA
4 mreexexlem2d.4 φs𝒫XyXzNsyNsyNsz
5 mreexexlem2d.5 φFXH
6 mreexexlem2d.6 φGXH
7 mreexexlem2d.7 φFNGH
8 mreexexlem2d.8 φFHI
9 mreexexd.9 φFFinGFin
10 1 elfvexd φXV
11 exmid FFin¬FFin
12 ficardid FFincardFF
13 12 ensymd FFinFcardF
14 iftrue FFinifFFincardFcardG=cardF
15 13 14 breqtrrd FFinFifFFincardFcardG
16 15 a1i φFFinFifFFincardFcardG
17 9 orcanai φ¬FFinGFin
18 ficardid GFincardGG
19 18 ensymd GFinGcardG
20 17 19 syl φ¬FFinGcardG
21 iffalse ¬FFinifFFincardFcardG=cardG
22 21 adantl φ¬FFinifFFincardFcardG=cardG
23 20 22 breqtrrd φ¬FFinGifFFincardFcardG
24 23 ex φ¬FFinGifFFincardFcardG
25 16 24 orim12d φFFin¬FFinFifFFincardFcardGGifFFincardFcardG
26 11 25 mpi φFifFFincardFcardGGifFFincardFcardG
27 ficardom FFincardFω
28 27 adantl φFFincardFω
29 ficardom GFincardGω
30 17 29 syl φ¬FFincardGω
31 28 30 ifclda φifFFincardFcardGω
32 breq2 l=flf
33 breq2 l=glg
34 32 33 orbi12d l=flglfg
35 34 3anbi1d l=flglfNghfhIfgfNghfhI
36 35 imbi1d l=flglfNghfhIi𝒫gfiihIfgfNghfhIi𝒫gfiihI
37 36 2ralbidv l=f𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfgfNghfhIi𝒫gfiihI
38 37 albidv l=hf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIhf𝒫Xhg𝒫XhfgfNghfhIi𝒫gfiihI
39 38 imbi2d l=φhf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIφhf𝒫Xhg𝒫XhfgfNghfhIi𝒫gfiihI
40 breq2 l=kflfk
41 breq2 l=kglgk
42 40 41 orbi12d l=kflglfkgk
43 42 3anbi1d l=kflglfNghfhIfkgkfNghfhI
44 43 imbi1d l=kflglfNghfhIi𝒫gfiihIfkgkfNghfhIi𝒫gfiihI
45 44 2ralbidv l=kf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
46 45 albidv l=khf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
47 46 imbi2d l=kφhf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIφhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
48 breq2 l=suckflfsuck
49 breq2 l=suckglgsuck
50 48 49 orbi12d l=suckflglfsuckgsuck
51 50 3anbi1d l=suckflglfNghfhIfsuckgsuckfNghfhI
52 51 imbi1d l=suckflglfNghfhIi𝒫gfiihIfsuckgsuckfNghfhIi𝒫gfiihI
53 52 2ralbidv l=suckf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
54 53 albidv l=suckhf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIhf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
55 54 imbi2d l=suckφhf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIφhf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
56 breq2 l=ifFFincardFcardGflfifFFincardFcardG
57 breq2 l=ifFFincardFcardGglgifFFincardFcardG
58 56 57 orbi12d l=ifFFincardFcardGflglfifFFincardFcardGgifFFincardFcardG
59 58 3anbi1d l=ifFFincardFcardGflglfNghfhIfifFFincardFcardGgifFFincardFcardGfNghfhI
60 59 imbi1d l=ifFFincardFcardGflglfNghfhIi𝒫gfiihIfifFFincardFcardGgifFFincardFcardGfNghfhIi𝒫gfiihI
61 60 2ralbidv l=ifFFincardFcardGf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfifFFincardFcardGgifFFincardFcardGfNghfhIi𝒫gfiihI
62 61 albidv l=ifFFincardFcardGhf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIhf𝒫Xhg𝒫XhfifFFincardFcardGgifFFincardFcardGfNghfhIi𝒫gfiihI
63 62 imbi2d l=ifFFincardFcardGφhf𝒫Xhg𝒫XhflglfNghfhIi𝒫gfiihIφhf𝒫Xhg𝒫XhfifFFincardFcardGgifFFincardFcardGfNghfhIi𝒫gfiihI
64 1 ad2antrr φf𝒫Xhg𝒫XhfgfNghfhIAMooreX
65 4 ad2antrr φf𝒫Xhg𝒫XhfgfNghfhIs𝒫XyXzNsyNsyNsz
66 simplrl φf𝒫Xhg𝒫XhfgfNghfhIf𝒫Xh
67 66 elpwid φf𝒫Xhg𝒫XhfgfNghfhIfXh
68 simplrr φf𝒫Xhg𝒫XhfgfNghfhIg𝒫Xh
69 68 elpwid φf𝒫Xhg𝒫XhfgfNghfhIgXh
70 simpr2 φf𝒫Xhg𝒫XhfgfNghfhIfNgh
71 simpr3 φf𝒫Xhg𝒫XhfgfNghfhIfhI
72 simpr1 φf𝒫Xhg𝒫XhfgfNghfhIfg
73 en0 ff=
74 en0 gg=
75 73 74 orbi12i fgf=g=
76 72 75 sylib φf𝒫Xhg𝒫XhfgfNghfhIf=g=
77 64 2 3 65 67 69 70 71 76 mreexexlem3d φf𝒫Xhg𝒫XhfgfNghfhIi𝒫gfiihI
78 77 ex φf𝒫Xhg𝒫XhfgfNghfhIi𝒫gfiihI
79 78 ralrimivva φf𝒫Xhg𝒫XhfgfNghfhIi𝒫gfiihI
80 79 alrimiv φhf𝒫Xhg𝒫XhfgfNghfhIi𝒫gfiihI
81 nfv hφ
82 nfv hkω
83 nfa1 hhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
84 81 82 83 nf3an hφkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
85 nfv fφ
86 nfv fkω
87 nfra1 ff𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
88 87 nfal fhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
89 85 86 88 nf3an fφkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
90 nfv gφ
91 nfv gkω
92 nfra2w gf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
93 92 nfal ghf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
94 90 91 93 nf3an gφkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
95 nfv gf𝒫Xh
96 94 95 nfan gφkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xh
97 1 3ad2ant1 φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIAMooreX
98 97 ad2antrr φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIAMooreX
99 4 3ad2ant1 φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIs𝒫XyXzNsyNsyNsz
100 99 ad2antrr φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIs𝒫XyXzNsyNsyNsz
101 simplrl φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIf𝒫Xh
102 101 elpwid φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIfXh
103 simplrr φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIg𝒫Xh
104 103 elpwid φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIgXh
105 simpr2 φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIfNgh
106 simpr3 φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIfhI
107 simpll2 φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIkω
108 simpll3 φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihI
109 simpr1 φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIfsuckgsuck
110 98 2 3 100 102 104 105 106 107 108 109 mreexexlem4d φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
111 110 ex φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
112 111 expr φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
113 96 112 ralrimi φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
114 113 ex φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
115 89 114 ralrimi φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
116 84 115 alrimi φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIhf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
117 116 3exp φkωhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIhf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
118 117 com12 kωφhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIhf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
119 118 a2d kωφhf𝒫Xhg𝒫XhfkgkfNghfhIi𝒫gfiihIφhf𝒫Xhg𝒫XhfsuckgsuckfNghfhIi𝒫gfiihI
120 39 47 55 63 80 119 finds ifFFincardFcardGωφhf𝒫Xhg𝒫XhfifFFincardFcardGgifFFincardFcardGfNghfhIi𝒫gfiihI
121 31 120 mpcom φhf𝒫Xhg𝒫XhfifFFincardFcardGgifFFincardFcardGfNghfhIi𝒫gfiihI
122 10 5 6 7 8 26 121 mreexexlemd φq𝒫GFqqHI