| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexexlem2d.1 |
|
| 2 |
|
mreexexlem2d.2 |
|
| 3 |
|
mreexexlem2d.3 |
|
| 4 |
|
mreexexlem2d.4 |
|
| 5 |
|
mreexexlem2d.5 |
|
| 6 |
|
mreexexlem2d.6 |
|
| 7 |
|
mreexexlem2d.7 |
|
| 8 |
|
mreexexlem2d.8 |
|
| 9 |
|
mreexexd.9 |
|
| 10 |
1
|
elfvexd |
|
| 11 |
|
exmid |
|
| 12 |
|
ficardid |
|
| 13 |
12
|
ensymd |
|
| 14 |
|
iftrue |
|
| 15 |
13 14
|
breqtrrd |
|
| 16 |
15
|
a1i |
|
| 17 |
9
|
orcanai |
|
| 18 |
|
ficardid |
|
| 19 |
18
|
ensymd |
|
| 20 |
17 19
|
syl |
|
| 21 |
|
iffalse |
|
| 22 |
21
|
adantl |
|
| 23 |
20 22
|
breqtrrd |
|
| 24 |
23
|
ex |
|
| 25 |
16 24
|
orim12d |
|
| 26 |
11 25
|
mpi |
|
| 27 |
|
ficardom |
|
| 28 |
27
|
adantl |
|
| 29 |
|
ficardom |
|
| 30 |
17 29
|
syl |
|
| 31 |
28 30
|
ifclda |
|
| 32 |
|
breq2 |
|
| 33 |
|
breq2 |
|
| 34 |
32 33
|
orbi12d |
|
| 35 |
34
|
3anbi1d |
|
| 36 |
35
|
imbi1d |
|
| 37 |
36
|
2ralbidv |
|
| 38 |
37
|
albidv |
|
| 39 |
38
|
imbi2d |
|
| 40 |
|
breq2 |
|
| 41 |
|
breq2 |
|
| 42 |
40 41
|
orbi12d |
|
| 43 |
42
|
3anbi1d |
|
| 44 |
43
|
imbi1d |
|
| 45 |
44
|
2ralbidv |
|
| 46 |
45
|
albidv |
|
| 47 |
46
|
imbi2d |
|
| 48 |
|
breq2 |
|
| 49 |
|
breq2 |
|
| 50 |
48 49
|
orbi12d |
|
| 51 |
50
|
3anbi1d |
|
| 52 |
51
|
imbi1d |
|
| 53 |
52
|
2ralbidv |
|
| 54 |
53
|
albidv |
|
| 55 |
54
|
imbi2d |
|
| 56 |
|
breq2 |
|
| 57 |
|
breq2 |
|
| 58 |
56 57
|
orbi12d |
|
| 59 |
58
|
3anbi1d |
|
| 60 |
59
|
imbi1d |
|
| 61 |
60
|
2ralbidv |
|
| 62 |
61
|
albidv |
|
| 63 |
62
|
imbi2d |
|
| 64 |
1
|
ad2antrr |
|
| 65 |
4
|
ad2antrr |
|
| 66 |
|
simplrl |
|
| 67 |
66
|
elpwid |
|
| 68 |
|
simplrr |
|
| 69 |
68
|
elpwid |
|
| 70 |
|
simpr2 |
|
| 71 |
|
simpr3 |
|
| 72 |
|
simpr1 |
|
| 73 |
|
en0 |
|
| 74 |
|
en0 |
|
| 75 |
73 74
|
orbi12i |
|
| 76 |
72 75
|
sylib |
|
| 77 |
64 2 3 65 67 69 70 71 76
|
mreexexlem3d |
|
| 78 |
77
|
ex |
|
| 79 |
78
|
ralrimivva |
|
| 80 |
79
|
alrimiv |
|
| 81 |
|
nfv |
|
| 82 |
|
nfv |
|
| 83 |
|
nfa1 |
|
| 84 |
81 82 83
|
nf3an |
|
| 85 |
|
nfv |
|
| 86 |
|
nfv |
|
| 87 |
|
nfra1 |
|
| 88 |
87
|
nfal |
|
| 89 |
85 86 88
|
nf3an |
|
| 90 |
|
nfv |
|
| 91 |
|
nfv |
|
| 92 |
|
nfra2w |
|
| 93 |
92
|
nfal |
|
| 94 |
90 91 93
|
nf3an |
|
| 95 |
|
nfv |
|
| 96 |
94 95
|
nfan |
|
| 97 |
1
|
3ad2ant1 |
|
| 98 |
97
|
ad2antrr |
|
| 99 |
4
|
3ad2ant1 |
|
| 100 |
99
|
ad2antrr |
|
| 101 |
|
simplrl |
|
| 102 |
101
|
elpwid |
|
| 103 |
|
simplrr |
|
| 104 |
103
|
elpwid |
|
| 105 |
|
simpr2 |
|
| 106 |
|
simpr3 |
|
| 107 |
|
simpll2 |
|
| 108 |
|
simpll3 |
|
| 109 |
|
simpr1 |
|
| 110 |
98 2 3 100 102 104 105 106 107 108 109
|
mreexexlem4d |
|
| 111 |
110
|
ex |
|
| 112 |
111
|
expr |
|
| 113 |
96 112
|
ralrimi |
|
| 114 |
113
|
ex |
|
| 115 |
89 114
|
ralrimi |
|
| 116 |
84 115
|
alrimi |
|
| 117 |
116
|
3exp |
|
| 118 |
117
|
com12 |
|
| 119 |
118
|
a2d |
|
| 120 |
39 47 55 63 80 119
|
finds |
|
| 121 |
31 120
|
mpcom |
|
| 122 |
10 5 6 7 8 26 121
|
mreexexlemd |
|