| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexexlem2d.1 |
|
| 2 |
|
mreexexlem2d.2 |
|
| 3 |
|
mreexexlem2d.3 |
|
| 4 |
|
mreexexlem2d.4 |
|
| 5 |
|
mreexexlem2d.5 |
|
| 6 |
|
mreexexlem2d.6 |
|
| 7 |
|
mreexexlem2d.7 |
|
| 8 |
|
mreexexlem2d.8 |
|
| 9 |
|
mreexexlem4d.9 |
|
| 10 |
|
mreexexlem4d.A |
|
| 11 |
|
mreexexlem4d.B |
|
| 12 |
1
|
adantr |
|
| 13 |
4
|
adantr |
|
| 14 |
5
|
adantr |
|
| 15 |
6
|
adantr |
|
| 16 |
7
|
adantr |
|
| 17 |
8
|
adantr |
|
| 18 |
|
animorrl |
|
| 19 |
12 2 3 13 14 15 16 17 18
|
mreexexlem3d |
|
| 20 |
|
n0 |
|
| 21 |
20
|
biimpi |
|
| 22 |
21
|
adantl |
|
| 23 |
1
|
adantr |
|
| 24 |
4
|
adantr |
|
| 25 |
5
|
adantr |
|
| 26 |
6
|
adantr |
|
| 27 |
7
|
adantr |
|
| 28 |
8
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
23 2 3 24 25 26 27 28 29
|
mreexexlem2d |
|
| 31 |
|
3anass |
|
| 32 |
1
|
ad2antrr |
|
| 33 |
32
|
elfvexd |
|
| 34 |
|
simpr2 |
|
| 35 |
|
difsnb |
|
| 36 |
34 35
|
sylib |
|
| 37 |
5
|
ad2antrr |
|
| 38 |
37
|
ssdifssd |
|
| 39 |
38
|
ssdifd |
|
| 40 |
36 39
|
eqsstrrd |
|
| 41 |
|
difun1 |
|
| 42 |
40 41
|
sseqtrrdi |
|
| 43 |
6
|
ad2antrr |
|
| 44 |
43
|
ssdifd |
|
| 45 |
44 41
|
sseqtrrdi |
|
| 46 |
7
|
ad2antrr |
|
| 47 |
|
simpr1 |
|
| 48 |
|
uncom |
|
| 49 |
48
|
uneq2i |
|
| 50 |
|
unass |
|
| 51 |
|
difsnid |
|
| 52 |
51
|
uneq1d |
|
| 53 |
50 52
|
eqtr3id |
|
| 54 |
49 53
|
eqtrid |
|
| 55 |
47 54
|
syl |
|
| 56 |
55
|
fveq2d |
|
| 57 |
46 56
|
sseqtrrd |
|
| 58 |
57
|
ssdifssd |
|
| 59 |
|
simpr3 |
|
| 60 |
11
|
ad2antrr |
|
| 61 |
9
|
ad2antrr |
|
| 62 |
|
simplr |
|
| 63 |
|
3anan12 |
|
| 64 |
|
dif1ennn |
|
| 65 |
63 64
|
sylbir |
|
| 66 |
65
|
expcom |
|
| 67 |
61 62 66
|
syl2anc |
|
| 68 |
|
3anan12 |
|
| 69 |
|
dif1ennn |
|
| 70 |
68 69
|
sylbir |
|
| 71 |
70
|
expcom |
|
| 72 |
61 47 71
|
syl2anc |
|
| 73 |
67 72
|
orim12d |
|
| 74 |
60 73
|
mpd |
|
| 75 |
10
|
ad2antrr |
|
| 76 |
33 42 45 58 59 74 75
|
mreexexlemd |
|
| 77 |
33
|
adantr |
|
| 78 |
6
|
ad3antrrr |
|
| 79 |
78
|
difss2d |
|
| 80 |
77 79
|
ssexd |
|
| 81 |
|
simprl |
|
| 82 |
81
|
elpwid |
|
| 83 |
82
|
difss2d |
|
| 84 |
|
simplr1 |
|
| 85 |
84
|
snssd |
|
| 86 |
83 85
|
unssd |
|
| 87 |
80 86
|
sselpwd |
|
| 88 |
|
difsnid |
|
| 89 |
88
|
ad3antlr |
|
| 90 |
|
simprrl |
|
| 91 |
|
en2sn |
|
| 92 |
91
|
el2v |
|
| 93 |
92
|
a1i |
|
| 94 |
|
disjdifr |
|
| 95 |
94
|
a1i |
|
| 96 |
|
ssdifin0 |
|
| 97 |
82 96
|
syl |
|
| 98 |
|
unen |
|
| 99 |
90 93 95 97 98
|
syl22anc |
|
| 100 |
89 99
|
eqbrtrrd |
|
| 101 |
|
unass |
|
| 102 |
|
uncom |
|
| 103 |
102
|
uneq2i |
|
| 104 |
101 103
|
eqtr2i |
|
| 105 |
|
simprrr |
|
| 106 |
104 105
|
eqeltrrid |
|
| 107 |
|
breq2 |
|
| 108 |
|
uneq1 |
|
| 109 |
108
|
eleq1d |
|
| 110 |
107 109
|
anbi12d |
|
| 111 |
110
|
rspcev |
|
| 112 |
87 100 106 111
|
syl12anc |
|
| 113 |
76 112
|
rexlimddv |
|
| 114 |
31 113
|
sylan2br |
|
| 115 |
30 114
|
rexlimddv |
|
| 116 |
115
|
adantlr |
|
| 117 |
22 116
|
exlimddv |
|
| 118 |
19 117
|
pm2.61dane |
|