| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexexlem2d.1 |
|
| 2 |
|
mreexexlem2d.2 |
|
| 3 |
|
mreexexlem2d.3 |
|
| 4 |
|
mreexexlem2d.4 |
|
| 5 |
|
mreexexlem2d.5 |
|
| 6 |
|
mreexexlem2d.6 |
|
| 7 |
|
mreexexlem2d.7 |
|
| 8 |
|
mreexexlem2d.8 |
|
| 9 |
|
mreexexlem3d.9 |
|
| 10 |
|
simpr |
|
| 11 |
1
|
adantr |
|
| 12 |
7
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
13
|
uneq1d |
|
| 15 |
|
uncom |
|
| 16 |
|
un0 |
|
| 17 |
15 16
|
eqtr3i |
|
| 18 |
14 17
|
eqtrdi |
|
| 19 |
18
|
fveq2d |
|
| 20 |
12 19
|
sseqtrd |
|
| 21 |
8
|
adantr |
|
| 22 |
3 11 21
|
mrissd |
|
| 23 |
22
|
unssbd |
|
| 24 |
11 2 23
|
mrcssidd |
|
| 25 |
20 24
|
unssd |
|
| 26 |
|
ssun2 |
|
| 27 |
26
|
a1i |
|
| 28 |
11 2 3 25 27 21
|
mrissmrcd |
|
| 29 |
|
ssequn1 |
|
| 30 |
28 29
|
sylibr |
|
| 31 |
5
|
adantr |
|
| 32 |
30 31
|
ssind |
|
| 33 |
|
disjdif |
|
| 34 |
32 33
|
sseqtrdi |
|
| 35 |
|
ss0b |
|
| 36 |
34 35
|
sylib |
|
| 37 |
10 36 9
|
mpjaodan |
|
| 38 |
|
0elpw |
|
| 39 |
37 38
|
eqeltrdi |
|
| 40 |
1
|
elfvexd |
|
| 41 |
5
|
difss2d |
|
| 42 |
40 41
|
ssexd |
|
| 43 |
|
enrefg |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
breq2 |
|
| 46 |
|
uneq1 |
|
| 47 |
46
|
eleq1d |
|
| 48 |
45 47
|
anbi12d |
|
| 49 |
48
|
rspcev |
|
| 50 |
39 44 8 49
|
syl12anc |
|