Description: Base case of the induction in mreexexd . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mreexexlem2d.1 | |
|
mreexexlem2d.2 | |
||
mreexexlem2d.3 | |
||
mreexexlem2d.4 | |
||
mreexexlem2d.5 | |
||
mreexexlem2d.6 | |
||
mreexexlem2d.7 | |
||
mreexexlem2d.8 | |
||
mreexexlem3d.9 | |
||
Assertion | mreexexlem3d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexexlem2d.1 | |
|
2 | mreexexlem2d.2 | |
|
3 | mreexexlem2d.3 | |
|
4 | mreexexlem2d.4 | |
|
5 | mreexexlem2d.5 | |
|
6 | mreexexlem2d.6 | |
|
7 | mreexexlem2d.7 | |
|
8 | mreexexlem2d.8 | |
|
9 | mreexexlem3d.9 | |
|
10 | simpr | |
|
11 | 1 | adantr | |
12 | 7 | adantr | |
13 | simpr | |
|
14 | 13 | uneq1d | |
15 | uncom | |
|
16 | un0 | |
|
17 | 15 16 | eqtr3i | |
18 | 14 17 | eqtrdi | |
19 | 18 | fveq2d | |
20 | 12 19 | sseqtrd | |
21 | 8 | adantr | |
22 | 3 11 21 | mrissd | |
23 | 22 | unssbd | |
24 | 11 2 23 | mrcssidd | |
25 | 20 24 | unssd | |
26 | ssun2 | |
|
27 | 26 | a1i | |
28 | 11 2 3 25 27 21 | mrissmrcd | |
29 | ssequn1 | |
|
30 | 28 29 | sylibr | |
31 | 5 | adantr | |
32 | 30 31 | ssind | |
33 | disjdif | |
|
34 | 32 33 | sseqtrdi | |
35 | ss0b | |
|
36 | 34 35 | sylib | |
37 | 10 36 9 | mpjaodan | |
38 | 0elpw | |
|
39 | 37 38 | eqeltrdi | |
40 | 1 | elfvexd | |
41 | 5 | difss2d | |
42 | 40 41 | ssexd | |
43 | enrefg | |
|
44 | 42 43 | syl | |
45 | breq2 | |
|
46 | uneq1 | |
|
47 | 46 | eleq1d | |
48 | 45 47 | anbi12d | |
49 | 48 | rspcev | |
50 | 39 44 8 49 | syl12anc | |