Metamath Proof Explorer


Theorem mreexexlem3d

Description: Base case of the induction in mreexexd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexexlem2d.1 φAMooreX
mreexexlem2d.2 N=mrClsA
mreexexlem2d.3 I=mrIndA
mreexexlem2d.4 φs𝒫XyXzNsyNsyNsz
mreexexlem2d.5 φFXH
mreexexlem2d.6 φGXH
mreexexlem2d.7 φFNGH
mreexexlem2d.8 φFHI
mreexexlem3d.9 φF=G=
Assertion mreexexlem3d φi𝒫GFiiHI

Proof

Step Hyp Ref Expression
1 mreexexlem2d.1 φAMooreX
2 mreexexlem2d.2 N=mrClsA
3 mreexexlem2d.3 I=mrIndA
4 mreexexlem2d.4 φs𝒫XyXzNsyNsyNsz
5 mreexexlem2d.5 φFXH
6 mreexexlem2d.6 φGXH
7 mreexexlem2d.7 φFNGH
8 mreexexlem2d.8 φFHI
9 mreexexlem3d.9 φF=G=
10 simpr φF=F=
11 1 adantr φG=AMooreX
12 7 adantr φG=FNGH
13 simpr φG=G=
14 13 uneq1d φG=GH=H
15 uncom H=H
16 un0 H=H
17 15 16 eqtr3i H=H
18 14 17 eqtrdi φG=GH=H
19 18 fveq2d φG=NGH=NH
20 12 19 sseqtrd φG=FNH
21 8 adantr φG=FHI
22 3 11 21 mrissd φG=FHX
23 22 unssbd φG=HX
24 11 2 23 mrcssidd φG=HNH
25 20 24 unssd φG=FHNH
26 ssun2 HFH
27 26 a1i φG=HFH
28 11 2 3 25 27 21 mrissmrcd φG=FH=H
29 ssequn1 FHFH=H
30 28 29 sylibr φG=FH
31 5 adantr φG=FXH
32 30 31 ssind φG=FHXH
33 disjdif HXH=
34 32 33 sseqtrdi φG=F
35 ss0b FF=
36 34 35 sylib φG=F=
37 10 36 9 mpjaodan φF=
38 0elpw 𝒫G
39 37 38 eqeltrdi φF𝒫G
40 1 elfvexd φXV
41 5 difss2d φFX
42 40 41 ssexd φFV
43 enrefg FVFF
44 42 43 syl φFF
45 breq2 i=FFiFF
46 uneq1 i=FiH=FH
47 46 eleq1d i=FiHIFHI
48 45 47 anbi12d i=FFiiHIFFFHI
49 48 rspcev F𝒫GFFFHIi𝒫GFiiHI
50 39 44 8 49 syl12anc φi𝒫GFiiHI