| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreexexlem2d.1 |
|
| 2 |
|
mreexexlem2d.2 |
|
| 3 |
|
mreexexlem2d.3 |
|
| 4 |
|
mreexexlem2d.4 |
|
| 5 |
|
mreexexlem2d.5 |
|
| 6 |
|
mreexexlem2d.6 |
|
| 7 |
|
mreexexlem2d.7 |
|
| 8 |
|
mreexexlem2d.8 |
|
| 9 |
|
mreexexlem2d.9 |
|
| 10 |
7
|
adantr |
|
| 11 |
1
|
adantr |
|
| 12 |
|
simpr |
|
| 13 |
|
ssun2 |
|
| 14 |
|
difundir |
|
| 15 |
|
incom |
|
| 16 |
|
ssdifin0 |
|
| 17 |
5 16
|
syl |
|
| 18 |
15 17
|
eqtr3id |
|
| 19 |
|
minel |
|
| 20 |
9 18 19
|
syl2anc |
|
| 21 |
|
difsnb |
|
| 22 |
20 21
|
sylib |
|
| 23 |
22
|
uneq2d |
|
| 24 |
14 23
|
eqtrid |
|
| 25 |
13 24
|
sseqtrrid |
|
| 26 |
3 1 8
|
mrissd |
|
| 27 |
26
|
ssdifssd |
|
| 28 |
1 2 27
|
mrcssidd |
|
| 29 |
25 28
|
sstrd |
|
| 30 |
29
|
adantr |
|
| 31 |
12 30
|
unssd |
|
| 32 |
11 2
|
mrcssvd |
|
| 33 |
11 2 31 32
|
mrcssd |
|
| 34 |
27
|
adantr |
|
| 35 |
11 2 34
|
mrcidmd |
|
| 36 |
33 35
|
sseqtrd |
|
| 37 |
10 36
|
sstrd |
|
| 38 |
9
|
adantr |
|
| 39 |
37 38
|
sseldd |
|
| 40 |
8
|
adantr |
|
| 41 |
|
ssun1 |
|
| 42 |
41 38
|
sselid |
|
| 43 |
2 3 11 40 42
|
ismri2dad |
|
| 44 |
39 43
|
pm2.65da |
|
| 45 |
|
nss |
|
| 46 |
44 45
|
sylib |
|
| 47 |
|
simprl |
|
| 48 |
|
ssun1 |
|
| 49 |
48 24
|
sseqtrrid |
|
| 50 |
49 28
|
sstrd |
|
| 51 |
50
|
adantr |
|
| 52 |
|
simprr |
|
| 53 |
51 52
|
ssneldd |
|
| 54 |
|
unass |
|
| 55 |
1
|
adantr |
|
| 56 |
4
|
adantr |
|
| 57 |
8
|
adantr |
|
| 58 |
|
difss |
|
| 59 |
|
unss1 |
|
| 60 |
58 59
|
mp1i |
|
| 61 |
55 2 3 57 60
|
mrissmrid |
|
| 62 |
6
|
adantr |
|
| 63 |
62
|
difss2d |
|
| 64 |
63 47
|
sseldd |
|
| 65 |
24
|
adantr |
|
| 66 |
65
|
fveq2d |
|
| 67 |
52 66
|
neleqtrd |
|
| 68 |
55 2 3 56 61 64 67
|
mreexmrid |
|
| 69 |
54 68
|
eqeltrrid |
|
| 70 |
47 53 69
|
jca32 |
|
| 71 |
70
|
ex |
|
| 72 |
71
|
eximdv |
|
| 73 |
46 72
|
mpd |
|
| 74 |
|
df-rex |
|
| 75 |
73 74
|
sylibr |
|