| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgt0con1dlem.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | mulgt0con1dlem.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | mulgt0con1dlem.1 | ⊢ ( 𝜑  →  ( 0  <  𝐴  →  0  <  𝐵 ) ) | 
						
							| 4 |  | mulgt0con1dlem.2 | ⊢ ( 𝜑  →  ( 𝐴  =  0  →  𝐵  =  0 ) ) | 
						
							| 5 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 6 | 2 5 | lttrid | ⊢ ( 𝜑  →  ( 𝐵  <  0  ↔  ¬  ( 𝐵  =  0  ∨  0  <  𝐵 ) ) ) | 
						
							| 7 | 4 3 | orim12d | ⊢ ( 𝜑  →  ( ( 𝐴  =  0  ∨  0  <  𝐴 )  →  ( 𝐵  =  0  ∨  0  <  𝐵 ) ) ) | 
						
							| 8 | 7 | con3d | ⊢ ( 𝜑  →  ( ¬  ( 𝐵  =  0  ∨  0  <  𝐵 )  →  ¬  ( 𝐴  =  0  ∨  0  <  𝐴 ) ) ) | 
						
							| 9 | 1 5 | lttrid | ⊢ ( 𝜑  →  ( 𝐴  <  0  ↔  ¬  ( 𝐴  =  0  ∨  0  <  𝐴 ) ) ) | 
						
							| 10 | 8 9 | sylibrd | ⊢ ( 𝜑  →  ( ¬  ( 𝐵  =  0  ∨  0  <  𝐵 )  →  𝐴  <  0 ) ) | 
						
							| 11 | 6 10 | sylbid | ⊢ ( 𝜑  →  ( 𝐵  <  0  →  𝐴  <  0 ) ) |