Step |
Hyp |
Ref |
Expression |
1 |
|
mulgt0con1dlem.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
mulgt0con1dlem.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
mulgt0con1dlem.1 |
⊢ ( 𝜑 → ( 0 < 𝐴 → 0 < 𝐵 ) ) |
4 |
|
mulgt0con1dlem.2 |
⊢ ( 𝜑 → ( 𝐴 = 0 → 𝐵 = 0 ) ) |
5 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
6 |
2 5
|
lttrid |
⊢ ( 𝜑 → ( 𝐵 < 0 ↔ ¬ ( 𝐵 = 0 ∨ 0 < 𝐵 ) ) ) |
7 |
4 3
|
orim12d |
⊢ ( 𝜑 → ( ( 𝐴 = 0 ∨ 0 < 𝐴 ) → ( 𝐵 = 0 ∨ 0 < 𝐵 ) ) ) |
8 |
7
|
con3d |
⊢ ( 𝜑 → ( ¬ ( 𝐵 = 0 ∨ 0 < 𝐵 ) → ¬ ( 𝐴 = 0 ∨ 0 < 𝐴 ) ) ) |
9 |
1 5
|
lttrid |
⊢ ( 𝜑 → ( 𝐴 < 0 ↔ ¬ ( 𝐴 = 0 ∨ 0 < 𝐴 ) ) ) |
10 |
8 9
|
sylibrd |
⊢ ( 𝜑 → ( ¬ ( 𝐵 = 0 ∨ 0 < 𝐵 ) → 𝐴 < 0 ) ) |
11 |
6 10
|
sylbid |
⊢ ( 𝜑 → ( 𝐵 < 0 → 𝐴 < 0 ) ) |