| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgt0con1d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | mulgt0con1d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | mulgt0con1d.1 | ⊢ ( 𝜑  →  0  <  𝐵 ) | 
						
							| 4 |  | mulgt0con1d.2 | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  <  0 ) | 
						
							| 5 | 1 2 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 6 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 9 | 3 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  0  <  𝐵 ) | 
						
							| 10 | 6 7 8 9 | mulgt0d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  0  <  ( 𝐴  ·  𝐵 ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝜑  →  ( 0  <  𝐴  →  0  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 12 |  | remul02 | ⊢ ( 𝐵  ∈  ℝ  →  ( 0  ·  𝐵 )  =  0 ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  ( 0  ·  𝐵 )  =  0 ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 0  ·  𝐵 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝐴  =  0  →  ( ( 𝐴  ·  𝐵 )  =  0  ↔  ( 0  ·  𝐵 )  =  0 ) ) | 
						
							| 16 | 13 15 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝐴  =  0  →  ( 𝐴  ·  𝐵 )  =  0 ) ) | 
						
							| 17 | 1 5 11 16 | mulgt0con1dlem | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  <  0  →  𝐴  <  0 ) ) | 
						
							| 18 | 4 17 | mpd | ⊢ ( 𝜑  →  𝐴  <  0 ) |