Step |
Hyp |
Ref |
Expression |
1 |
|
mulgt0con1dlem.a |
|- ( ph -> A e. RR ) |
2 |
|
mulgt0con1dlem.b |
|- ( ph -> B e. RR ) |
3 |
|
mulgt0con1dlem.1 |
|- ( ph -> ( 0 < A -> 0 < B ) ) |
4 |
|
mulgt0con1dlem.2 |
|- ( ph -> ( A = 0 -> B = 0 ) ) |
5 |
|
0red |
|- ( ph -> 0 e. RR ) |
6 |
2 5
|
lttrid |
|- ( ph -> ( B < 0 <-> -. ( B = 0 \/ 0 < B ) ) ) |
7 |
4 3
|
orim12d |
|- ( ph -> ( ( A = 0 \/ 0 < A ) -> ( B = 0 \/ 0 < B ) ) ) |
8 |
7
|
con3d |
|- ( ph -> ( -. ( B = 0 \/ 0 < B ) -> -. ( A = 0 \/ 0 < A ) ) ) |
9 |
1 5
|
lttrid |
|- ( ph -> ( A < 0 <-> -. ( A = 0 \/ 0 < A ) ) ) |
10 |
8 9
|
sylibrd |
|- ( ph -> ( -. ( B = 0 \/ 0 < B ) -> A < 0 ) ) |
11 |
6 10
|
sylbid |
|- ( ph -> ( B < 0 -> A < 0 ) ) |