| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgt0con1dlem.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | mulgt0con1dlem.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | mulgt0con1dlem.1 |  |-  ( ph -> ( 0 < A -> 0 < B ) ) | 
						
							| 4 |  | mulgt0con1dlem.2 |  |-  ( ph -> ( A = 0 -> B = 0 ) ) | 
						
							| 5 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 6 | 2 5 | lttrid |  |-  ( ph -> ( B < 0 <-> -. ( B = 0 \/ 0 < B ) ) ) | 
						
							| 7 | 4 3 | orim12d |  |-  ( ph -> ( ( A = 0 \/ 0 < A ) -> ( B = 0 \/ 0 < B ) ) ) | 
						
							| 8 | 7 | con3d |  |-  ( ph -> ( -. ( B = 0 \/ 0 < B ) -> -. ( A = 0 \/ 0 < A ) ) ) | 
						
							| 9 | 1 5 | lttrid |  |-  ( ph -> ( A < 0 <-> -. ( A = 0 \/ 0 < A ) ) ) | 
						
							| 10 | 8 9 | sylibrd |  |-  ( ph -> ( -. ( B = 0 \/ 0 < B ) -> A < 0 ) ) | 
						
							| 11 | 6 10 | sylbid |  |-  ( ph -> ( B < 0 -> A < 0 ) ) |