| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  ℤ )  →  𝐹  ∈  ℤ ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  ℤ )  →  𝑃  ∈  ( mzPolyCld ‘ 𝑉 ) ) | 
						
							| 3 |  | elfvex | ⊢ ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  →  𝑉  ∈  V ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  ℤ )  →  𝑉  ∈  V ) | 
						
							| 5 |  | elmzpcl | ⊢ ( 𝑉  ∈  V  →  ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ↔  ( 𝑃  ⊆  ( ℤ  ↑m  ( ℤ  ↑m  𝑉 ) )  ∧  ( ( ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃  ∧  ∀ 𝑓  ∈  𝑉 ( 𝑔  ∈  ( ℤ  ↑m  𝑉 )  ↦  ( 𝑔 ‘ 𝑓 ) )  ∈  𝑃 )  ∧  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) ) ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  ℤ )  →  ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ↔  ( 𝑃  ⊆  ( ℤ  ↑m  ( ℤ  ↑m  𝑉 ) )  ∧  ( ( ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃  ∧  ∀ 𝑓  ∈  𝑉 ( 𝑔  ∈  ( ℤ  ↑m  𝑉 )  ↦  ( 𝑔 ‘ 𝑓 ) )  ∈  𝑃 )  ∧  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) ) ) ) ) | 
						
							| 7 | 2 6 | mpbid | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  ℤ )  →  ( 𝑃  ⊆  ( ℤ  ↑m  ( ℤ  ↑m  𝑉 ) )  ∧  ( ( ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃  ∧  ∀ 𝑓  ∈  𝑉 ( 𝑔  ∈  ( ℤ  ↑m  𝑉 )  ↦  ( 𝑔 ‘ 𝑓 ) )  ∈  𝑃 )  ∧  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) ) ) ) | 
						
							| 8 |  | simprll | ⊢ ( ( 𝑃  ⊆  ( ℤ  ↑m  ( ℤ  ↑m  𝑉 ) )  ∧  ( ( ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃  ∧  ∀ 𝑓  ∈  𝑉 ( 𝑔  ∈  ( ℤ  ↑m  𝑉 )  ↦  ( 𝑔 ‘ 𝑓 ) )  ∈  𝑃 )  ∧  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) ) )  →  ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  ℤ )  →  ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃 ) | 
						
							| 10 |  | sneq | ⊢ ( 𝑓  =  𝐹  →  { 𝑓 }  =  { 𝐹 } ) | 
						
							| 11 | 10 | xpeq2d | ⊢ ( 𝑓  =  𝐹  →  ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  =  ( ( ℤ  ↑m  𝑉 )  ×  { 𝐹 } ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃  ↔  ( ( ℤ  ↑m  𝑉 )  ×  { 𝐹 } )  ∈  𝑃 ) ) | 
						
							| 13 | 12 | rspcva | ⊢ ( ( 𝐹  ∈  ℤ  ∧  ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃 )  →  ( ( ℤ  ↑m  𝑉 )  ×  { 𝐹 } )  ∈  𝑃 ) | 
						
							| 14 | 1 9 13 | syl2anc | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  ℤ )  →  ( ( ℤ  ↑m  𝑉 )  ×  { 𝐹 } )  ∈  𝑃 ) |