Metamath Proof Explorer


Theorem mzpcl1

Description: Defining property 1 of a polynomially closed function set P : it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpcl1 ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ ℤ ) → ( ( ℤ ↑m 𝑉 ) × { 𝐹 } ) ∈ 𝑃 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ ℤ ) → 𝐹 ∈ ℤ )
2 simpl ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ ℤ ) → 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) )
3 elfvex ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) → 𝑉 ∈ V )
4 3 adantr ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ ℤ ) → 𝑉 ∈ V )
5 elmzpcl ( 𝑉 ∈ V → ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ↔ ( 𝑃 ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∧ ( ( ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ∧ ∀ 𝑓𝑉 ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔𝑓 ) ) ∈ 𝑃 ) ∧ ∀ 𝑓𝑃𝑔𝑃 ( ( 𝑓f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑃 ) ) ) ) )
6 4 5 syl ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ ℤ ) → ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ↔ ( 𝑃 ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∧ ( ( ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ∧ ∀ 𝑓𝑉 ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔𝑓 ) ) ∈ 𝑃 ) ∧ ∀ 𝑓𝑃𝑔𝑃 ( ( 𝑓f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑃 ) ) ) ) )
7 2 6 mpbid ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ ℤ ) → ( 𝑃 ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∧ ( ( ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ∧ ∀ 𝑓𝑉 ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔𝑓 ) ) ∈ 𝑃 ) ∧ ∀ 𝑓𝑃𝑔𝑃 ( ( 𝑓f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑃 ) ) ) )
8 simprll ( ( 𝑃 ⊆ ( ℤ ↑m ( ℤ ↑m 𝑉 ) ) ∧ ( ( ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ∧ ∀ 𝑓𝑉 ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔𝑓 ) ) ∈ 𝑃 ) ∧ ∀ 𝑓𝑃𝑔𝑃 ( ( 𝑓f + 𝑔 ) ∈ 𝑃 ∧ ( 𝑓f · 𝑔 ) ∈ 𝑃 ) ) ) → ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 )
9 7 8 syl ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ ℤ ) → ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 )
10 sneq ( 𝑓 = 𝐹 → { 𝑓 } = { 𝐹 } )
11 10 xpeq2d ( 𝑓 = 𝐹 → ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) = ( ( ℤ ↑m 𝑉 ) × { 𝐹 } ) )
12 11 eleq1d ( 𝑓 = 𝐹 → ( ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ↔ ( ( ℤ ↑m 𝑉 ) × { 𝐹 } ) ∈ 𝑃 ) )
13 12 rspcva ( ( 𝐹 ∈ ℤ ∧ ∀ 𝑓 ∈ ℤ ( ( ℤ ↑m 𝑉 ) × { 𝑓 } ) ∈ 𝑃 ) → ( ( ℤ ↑m 𝑉 ) × { 𝐹 } ) ∈ 𝑃 )
14 1 9 13 syl2anc ( ( 𝑃 ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝐹 ∈ ℤ ) → ( ( ℤ ↑m 𝑉 ) × { 𝐹 } ) ∈ 𝑃 )