| Step |
Hyp |
Ref |
Expression |
| 1 |
|
8nn |
⊢ 8 ∈ ℕ |
| 2 |
1
|
elexi |
⊢ 8 ∈ V |
| 3 |
|
eleq1 |
⊢ ( 𝑎 = 8 → ( 𝑎 ∈ ℤ ↔ 8 ∈ ℤ ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑎 = 8 → ( 𝑎 ↑ 𝑝 ) = ( 8 ↑ 𝑝 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑎 = 8 → ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( ( 8 ↑ 𝑝 ) mod 𝑝 ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑎 = 8 → ( 𝑎 mod 𝑝 ) = ( 8 mod 𝑝 ) ) |
| 7 |
5 6
|
eqeq12d |
⊢ ( 𝑎 = 8 → ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) ↔ ( ( 8 ↑ 𝑝 ) mod 𝑝 ) = ( 8 mod 𝑝 ) ) ) |
| 8 |
7
|
imbi1d |
⊢ ( 𝑎 = 8 → ( ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) → 𝑝 ∈ ℙ ) ↔ ( ( ( 8 ↑ 𝑝 ) mod 𝑝 ) = ( 8 mod 𝑝 ) → 𝑝 ∈ ℙ ) ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑎 = 8 → ( ¬ ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) → 𝑝 ∈ ℙ ) ↔ ¬ ( ( ( 8 ↑ 𝑝 ) mod 𝑝 ) = ( 8 mod 𝑝 ) → 𝑝 ∈ ℙ ) ) ) |
| 10 |
9
|
rexbidv |
⊢ ( 𝑎 = 8 → ( ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) → 𝑝 ∈ ℙ ) ↔ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 8 ↑ 𝑝 ) mod 𝑝 ) = ( 8 mod 𝑝 ) → 𝑝 ∈ ℙ ) ) ) |
| 11 |
3 10
|
anbi12d |
⊢ ( 𝑎 = 8 → ( ( 𝑎 ∈ ℤ ∧ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) → 𝑝 ∈ ℙ ) ) ↔ ( 8 ∈ ℤ ∧ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 8 ↑ 𝑝 ) mod 𝑝 ) = ( 8 mod 𝑝 ) → 𝑝 ∈ ℙ ) ) ) ) |
| 12 |
1
|
nnzi |
⊢ 8 ∈ ℤ |
| 13 |
|
nfermltl8rev |
⊢ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 8 ↑ 𝑝 ) mod 𝑝 ) = ( 8 mod 𝑝 ) → 𝑝 ∈ ℙ ) |
| 14 |
12 13
|
pm3.2i |
⊢ ( 8 ∈ ℤ ∧ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 8 ↑ 𝑝 ) mod 𝑝 ) = ( 8 mod 𝑝 ) → 𝑝 ∈ ℙ ) ) |
| 15 |
2 11 14
|
ceqsexv2d |
⊢ ∃ 𝑎 ( 𝑎 ∈ ℤ ∧ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) → 𝑝 ∈ ℙ ) ) |
| 16 |
|
df-rex |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) → 𝑝 ∈ ℙ ) ↔ ∃ 𝑎 ( 𝑎 ∈ ℤ ∧ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) → 𝑝 ∈ ℙ ) ) ) |
| 17 |
15 16
|
mpbir |
⊢ ∃ 𝑎 ∈ ℤ ∃ 𝑝 ∈ ( ℤ≥ ‘ 3 ) ¬ ( ( ( 𝑎 ↑ 𝑝 ) mod 𝑝 ) = ( 𝑎 mod 𝑝 ) → 𝑝 ∈ ℙ ) |