Step |
Hyp |
Ref |
Expression |
1 |
|
8nn |
|- 8 e. NN |
2 |
1
|
elexi |
|- 8 e. _V |
3 |
|
eleq1 |
|- ( a = 8 -> ( a e. ZZ <-> 8 e. ZZ ) ) |
4 |
|
oveq1 |
|- ( a = 8 -> ( a ^ p ) = ( 8 ^ p ) ) |
5 |
4
|
oveq1d |
|- ( a = 8 -> ( ( a ^ p ) mod p ) = ( ( 8 ^ p ) mod p ) ) |
6 |
|
oveq1 |
|- ( a = 8 -> ( a mod p ) = ( 8 mod p ) ) |
7 |
5 6
|
eqeq12d |
|- ( a = 8 -> ( ( ( a ^ p ) mod p ) = ( a mod p ) <-> ( ( 8 ^ p ) mod p ) = ( 8 mod p ) ) ) |
8 |
7
|
imbi1d |
|- ( a = 8 -> ( ( ( ( a ^ p ) mod p ) = ( a mod p ) -> p e. Prime ) <-> ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) ) |
9 |
8
|
notbid |
|- ( a = 8 -> ( -. ( ( ( a ^ p ) mod p ) = ( a mod p ) -> p e. Prime ) <-> -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) ) |
10 |
9
|
rexbidv |
|- ( a = 8 -> ( E. p e. ( ZZ>= ` 3 ) -. ( ( ( a ^ p ) mod p ) = ( a mod p ) -> p e. Prime ) <-> E. p e. ( ZZ>= ` 3 ) -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) ) |
11 |
3 10
|
anbi12d |
|- ( a = 8 -> ( ( a e. ZZ /\ E. p e. ( ZZ>= ` 3 ) -. ( ( ( a ^ p ) mod p ) = ( a mod p ) -> p e. Prime ) ) <-> ( 8 e. ZZ /\ E. p e. ( ZZ>= ` 3 ) -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) ) ) |
12 |
1
|
nnzi |
|- 8 e. ZZ |
13 |
|
nfermltl8rev |
|- E. p e. ( ZZ>= ` 3 ) -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) |
14 |
12 13
|
pm3.2i |
|- ( 8 e. ZZ /\ E. p e. ( ZZ>= ` 3 ) -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) |
15 |
2 11 14
|
ceqsexv2d |
|- E. a ( a e. ZZ /\ E. p e. ( ZZ>= ` 3 ) -. ( ( ( a ^ p ) mod p ) = ( a mod p ) -> p e. Prime ) ) |
16 |
|
df-rex |
|- ( E. a e. ZZ E. p e. ( ZZ>= ` 3 ) -. ( ( ( a ^ p ) mod p ) = ( a mod p ) -> p e. Prime ) <-> E. a ( a e. ZZ /\ E. p e. ( ZZ>= ` 3 ) -. ( ( ( a ^ p ) mod p ) = ( a mod p ) -> p e. Prime ) ) ) |
17 |
15 16
|
mpbir |
|- E. a e. ZZ E. p e. ( ZZ>= ` 3 ) -. ( ( ( a ^ p ) mod p ) = ( a mod p ) -> p e. Prime ) |