| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nffr.r |
⊢ Ⅎ 𝑥 𝑅 |
| 2 |
|
nffr.a |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑎 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
| 5 |
4 2
|
nfss |
⊢ Ⅎ 𝑥 𝑎 ⊆ 𝐴 |
| 6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 ≠ ∅ |
| 7 |
5 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
| 10 |
8 1 9
|
nfbr |
⊢ Ⅎ 𝑥 𝑐 𝑅 𝑏 |
| 11 |
10
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝑐 𝑅 𝑏 |
| 12 |
4 11
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 |
| 13 |
4 12
|
nfrexw |
⊢ Ⅎ 𝑥 ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 |
| 14 |
7 13
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) |
| 15 |
14
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑎 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) |
| 16 |
3 15
|
nfxfr |
⊢ Ⅎ 𝑥 𝑅 Fr 𝐴 |