Metamath Proof Explorer


Theorem nffr

Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nffr.r _xR
nffr.a _xA
Assertion nffr xRFrA

Proof

Step Hyp Ref Expression
1 nffr.r _xR
2 nffr.a _xA
3 df-fr RFrAaaAabaca¬cRb
4 nfcv _xa
5 4 2 nfss xaA
6 nfv xa
7 5 6 nfan xaAa
8 nfcv _xc
9 nfcv _xb
10 8 1 9 nfbr xcRb
11 10 nfn x¬cRb
12 4 11 nfralw xca¬cRb
13 4 12 nfrexw xbaca¬cRb
14 7 13 nfim xaAabaca¬cRb
15 14 nfal xaaAabaca¬cRb
16 3 15 nfxfr xRFrA