Description: The norm of a normed group is a continuous function to CC . (Contributed by NM, 12-Aug-2007) (Revised by AV, 17-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcn.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| nmcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| ngnmcncn.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | ngnmcncn | ⊢ ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn 𝐾 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nmcn.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 2 | nmcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | ngnmcncn.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 4 | 3 | cnfldtop | ⊢ 𝐾 ∈ Top | 
| 5 | cnrest2r | ⊢ ( 𝐾 ∈ Top → ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) | 
| 7 | 3 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) | 
| 8 | 7 | eqcomi | ⊢ ( 𝐾 ↾t ℝ ) = ( topGen ‘ ran (,) ) | 
| 9 | 1 2 8 | nmcn | ⊢ ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) ) | 
| 10 | 6 9 | sselid | ⊢ ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn 𝐾 ) ) |