Metamath Proof Explorer


Theorem ngnmcncn

Description: The norm of a normed group is a continuous function to CC . (Contributed by NM, 12-Aug-2007) (Revised by AV, 17-Oct-2021)

Ref Expression
Hypotheses nmcn.n 𝑁 = ( norm ‘ 𝐺 )
nmcn.j 𝐽 = ( TopOpen ‘ 𝐺 )
ngnmcncn.k 𝐾 = ( TopOpen ‘ ℂfld )
Assertion ngnmcncn ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 nmcn.n 𝑁 = ( norm ‘ 𝐺 )
2 nmcn.j 𝐽 = ( TopOpen ‘ 𝐺 )
3 ngnmcncn.k 𝐾 = ( TopOpen ‘ ℂfld )
4 3 cnfldtop 𝐾 ∈ Top
5 cnrest2r ( 𝐾 ∈ Top → ( 𝐽 Cn ( 𝐾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) )
6 4 5 ax-mp ( 𝐽 Cn ( 𝐾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 )
7 3 tgioo2 ( topGen ‘ ran (,) ) = ( 𝐾t ℝ )
8 7 eqcomi ( 𝐾t ℝ ) = ( topGen ‘ ran (,) )
9 1 2 8 nmcn ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn ( 𝐾t ℝ ) ) )
10 6 9 sseldi ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn 𝐾 ) )