| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmcn.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 2 |  | nmcn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝐺 ) | 
						
							| 3 |  | nmcn.k | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 7 | 1 4 5 6 | nmfval | ⊢ 𝑁  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( 𝑥 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 8 |  | ngpms | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  MetSp ) | 
						
							| 9 |  | ngptps | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  TopSp ) | 
						
							| 10 | 4 2 | istps | ⊢ ( 𝐺  ∈  TopSp  ↔  𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) | 
						
							| 12 | 11 | cnmptid | ⊢ ( 𝐺  ∈  NrmGrp  →  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  𝑥 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 13 |  | ngpgrp | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  Grp ) | 
						
							| 14 | 4 5 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝐺  ∈  NrmGrp  →  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 16 | 11 11 15 | cnmptc | ⊢ ( 𝐺  ∈  NrmGrp  →  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( 0g ‘ 𝐺 ) )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 17 | 6 2 3 8 11 12 16 | cnmpt1ds | ⊢ ( 𝐺  ∈  NrmGrp  →  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( 𝑥 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 18 | 7 17 | eqeltrid | ⊢ ( 𝐺  ∈  NrmGrp  →  𝑁  ∈  ( 𝐽  Cn  𝐾 ) ) |