| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmcn.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
| 2 |
|
nmcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 3 |
|
nmcn.k |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 6 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 7 |
1 4 5 6
|
nmfval |
⊢ 𝑁 = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 8 |
|
ngpms |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) |
| 9 |
|
ngptps |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp ) |
| 10 |
4 2
|
istps |
⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝐺 ∈ NrmGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 12 |
11
|
cnmptid |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 13 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
| 14 |
4 5
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝐺 ∈ NrmGrp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 16 |
11 11 15
|
cnmptc |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 0g ‘ 𝐺 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 17 |
6 2 3 8 11 12 16
|
cnmpt1ds |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 18 |
7 17
|
eqeltrid |
⊢ ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn 𝐾 ) ) |